Sunday, July 9, 2017

College Algebra, Chapter 1, 1.5, Section 1.5, Problem 70

Find all solutions, real and complex of the equation $\displaystyle 1 - \sqrt{x^2 + 7} = 6 - x^2$


$
\begin{equation}
\begin{aligned}

1 - \sqrt{x^2 + 7} =& 6 - x^2
&& \text{Given}
\\
\\
\sqrt{x^2 + 7} =& 5 - x^2
&& \text{Subtract } 1
\\
\\
x^2 + 7 =& 25 - 10x^2 + x^4
&& \text{Square both sides}
\\
\\
x^4 - 11x^2 - 18 =& 0
&& \text{Combine like terms}
\\
\\
w^2 - 11w - 18 =& 0
&& \text{Let } w = x^2
\\
\\
w^2 - 11w =& 18
&& \text{Add } 18
\\
\\
w^2 - 11w + \frac{121}{4} =& 18 + \frac{121}{4}
&& \text{Complete the square: add } \left( \frac{-11}{2} \right)^2 = \frac{121}{4}
\\
\\
\left( w - \frac{11}{2} \right)^2 =& \frac{193}{4}
&& \text{Perfect Square}
\\
\\
w - \frac{11}{2} =& \pm \sqrt{\frac{193}{4}}
&& \text{Take the square root}
\\
\\
w =& \frac{11}{2} \pm \frac{\sqrt{193}}{2}
&& \text{Add } \frac{11}{2} \text{ and simplify}
\\
\\
w =& \frac{11 + \sqrt{193}}{2} \text{ and } w = \frac{11 - \sqrt{193}}{2}
&& \text{Solve for } w
\\
\\
x^2 =& \pm \sqrt{\frac{11 + \sqrt{193}}{2}} \text{ and } \pm \sqrt{\frac{11 - \sqrt{193}}{2}}
&& \text{Solve for } x


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...