Tuesday, December 6, 2016

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 72

Find the values of $x$ that has a graph of $f(x) = xX^3 + 3x^2 + x + 3$, where tangent is horizontal.
Given: $f(x) = x^3 + 3x^2 + x + 3$
$f'(x) = m_T = 0$ slope is 0 when tangent is horizontal.


$
\begin{equation}
\begin{aligned}
f(x) & = x^3 + 3x^2 + x + 3\\
f'(x)& = m_T = \frac{d}{dx}(x^3) + 3 \frac{d}{dx} (x^2) + \frac{d}{dx} (x) + \frac{d}{dx} (3)
&& \text{Derive each terms}\\
\\
f'(x)& = 3x^2 + (3)(2x) + 1 + 0
&& \text{Simplify}\\
\\
m_T & = 3x^2 + 6x + 1
&& \text{Substitute the value of the slope } (m_T)\\
\\
0 & = 3x^2 + 6x + 1
&& \text{Multiply both sides by } \frac{1}{3}\\
\\
\frac{3x^2 }{3} + \frac{6x}{3} + \frac{1}{3} &= \frac{0}{3}
&& \text{Simplify the equation}\\
\\
x^2 + 2x + \frac{1}{3} &= 0
&& \text{Add } \frac{-1}{3} \text{ to each sides}\\
\\
x^2 + 2x &= -\frac{1}{3}
&& \text{To make the left side a perfect square, we use completing the square}\\
\\
x^2 + 2x + 1 &= \frac{-1}{3} + 1
&& \text{Simplify the equation}\\
\\
(x+1)^2 &= \frac{2}{3}
&& \text{Take the square root of both sides}\\
\\
\sqrt{(x+1)^2} &= \pm \sqrt{\frac{2}{3}}
&& \text{Add -1 to each sides}\\
\\
x &= \pm \sqrt{\frac{2}{3}} - 1
&& \text{Get the LCD}\\
\\
x &= \frac{\pm \sqrt{2} - \sqrt{3}}{\sqrt{3}}
&& \text{Multiply both numerator and denominator by } \sqrt{3}\\
\\
x &= \frac{\pm \sqrt{2} - \sqrt{3}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}
&& \text{Simplify the equation}\\
\\
x &= \frac{-3 \pm \sqrt{6}}{3}
\end{aligned}
\end{equation}
$


The values of $x$ are $\displaystyle x = \frac{-3 +\sqrt{6}}{3}$ and $\displaystyle x = \frac{-3-\sqrt{6}}{3}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...