Saturday, December 10, 2016

College Algebra, Chapter 5, 5.3, Section 5.3, Problem 42

Expand the expression $\displaystyle \log \sqrt{x \sqrt{y \sqrt{z}}}$, using Laws of Logarithm


$
\begin{equation}
\begin{aligned}

\log \sqrt{x \sqrt{y \sqrt{z}}} =& \frac{1}{2} \log \left( x \sqrt{y \sqrt{z}} \right)
&& \text{Law of Logarithm } \log_a (A^C) = C \log_a A
\\
\\
\log \sqrt{x \sqrt{y \sqrt{z}}} =& \frac{1}{2} \left( \log x + \log \sqrt{y \sqrt{z}} \right)
&& \text{Law of Logarithm } \log_a (AB) = \log_a A + \log_a B
\\
\\
\log \sqrt{x \sqrt{y \sqrt{z}}} =& \frac{1}{2} \left[ \log x + \frac{1}{2} \log (y \sqrt{z} ) \right]
&& \text{Law of Logarithm } \log_a (A^C) = C \log_a A
\\
\\
\log \sqrt{x \sqrt{y \sqrt{z}}} =& \frac{1}{2} \left[ \log x + \frac{1}{2} \left( \log y + \log \sqrt{z} \right) \right]
&& \text{Law of Logarithm } \log_a (AB) = \log_a A + \log_a B
\\
\\
\log \sqrt{x \sqrt{y \sqrt{z}}} =& \frac{1}{2} \left[ \log x + \frac{1}{2} \left( \log y + \frac{1}{2} \log z \right) \right]
&& \text{Law of Logarithm } \log_a (A^C) = C \log_a A
\\
\\
\log \sqrt{x \sqrt{y \sqrt{z}}} =& \frac{1}{2} \log x + \frac{1}{4} \log y + \frac{1}{8} \log z
&& \text{Distributive Property}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...