Friday, December 2, 2016

College Algebra, Chapter 1, 1.1, Section 1.1, Problem 90

Solve the equation $\displaystyle \frac{a+1}{b} = \frac{a-1}{b} + \frac{b+1}{a}$ for $a$

$
\begin{equation}
\begin{aligned}
\frac{a+1}{b} &= \frac{a-1}{b} + \frac{b+1}{a} && \text{Subtract both sides by } \left( \frac{a-1}{b} \right)\\
\\
\frac{a+1}{b} - \frac{a-b}{b} &= \frac{a-1}{b} + \frac{b+1}{a} - \frac{a-1}{b} && \text{Simplify}\\
\\
\frac{\cancel{a}+1-\cancel{a}+1}{b} &= \frac{b+1}{a} && \text{Get the LCD and combine like terms}\\
\\
\frac{2}{b} &= \frac{b+1}{a} && \text{Multiply both sides by } (ab)\\
\\
a\cancel{b} & \left[ \frac{2}{\cancel{b}} = \frac{b+1}{\cancel{a}} \right] \cancel{a}b && \text{Cancel out like terms} \\
\\
2a &= b(b+1) && \text{Divide both sides by 2}\\
\\
\frac{\cancel{2}a}{\cancel{2}} &= \frac{b(b+1)}{2} && \text{Simplify}\\
\\
a &= \frac{b(b+1)}{2}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...