Monday, December 5, 2016

Calculus of a Single Variable, Chapter 8, 8.7, Section 8.7, Problem 27

Given to solve,
lim_(x->oo) x^3/(e^(x/2))
as x->oo then the x^3/(e^(x/2))=oo/oo form
so upon applying the L 'Hopital rule we get the solution as follows,
as for the general equation it is as follows
lim_(x->a) f(x)/g(x) is = 0/0 or (+-oo)/(+-oo) then by using the L'Hopital Rule we get the solution with the below form.
lim_(x->a) (f'(x))/(g'(x))

so , now evaluating
lim_(x->oo) (x^3)/(e^(x/2))
=lim_(x->oo) ((x^3)')/((e^(x/2))')
= lim_(x->oo) (3x^2)/((e^(x/2))(1/2))
again (3x^2)/((e^(x/2))(1/2)) is of the form oo/oo so , applying the L'Hopital Rule we get
= lim_(x->oo) (3x^2)/((e^(x/2))(1/2))
= lim_(x->oo) ((3x^2)')/(((e^(x/2))(1/2))')
=lim_(x->oo) ((6x))/(((e^(x/2))(1/2)(1/2)))
=lim_(x->oo) ((6x))/(((e^(x/2))(1/4)))
again ((6x))/(((e^(x/2))(1/4))) is of the form oo/oo so , applying the L'Hopital Rule we get
=lim_(x->oo) ((6x))/(((e^(x/2))(1/4)))
=lim_(x->oo) ((6x)')/(((e^(x/2))(1/4))')
=lim_(x->oo) ((6))/(((e^(x/2))(1/4)(1/2)))
=lim_(x->oo) ((6))/(((e^(x/2))(1/8)))
=lim_(x->oo) ((6*8))/(((e^(x/2))))
=lim_(x->oo) ((48))/(((e^(x/2))))
upon plugging the value of x= oo

we get
=lim_(x->oo) ((48))/(((e^((oo)/2))))
=lim_(x->oo) ((48))/(oo)
=0

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...