Thursday, December 1, 2016

Calculus of a Single Variable, Chapter 8, 8.2, Section 8.2, Problem 13

To evaluate the integral: int x^3e^x dx , we may apply "integration by parts": int u *dv = uv- int vdu .
Let: u= x^3 then du = 3x^2 dx
dv = e^x dx then v = int e^x dx = e^x .

Apply the formula for integration by parts, we get:
int x^3e^x dx = x^3 e^x - int 3x^2e^xdx .
= x^3 e^x - 3 int x^2e^xdx.
To evaluate int x^2 e^x dx , we apply another set of integration by parts.
Let: u = x^2 then du = 2x dx
v=e^x dx then dv = e^x
The integral becomes:
int x^2 e^x dx =x^2e^x - int 2xe^x dx
Another set of integration by parts by letting:
u = 2x then du =2dx
v=e^x dx then dv = e^x
int 2xe^x dx = 2xe^x - int 2e^x dx
= 2xe^x -2 e^x +C
Using int 2xe^x dx =2xe^x - 2e^x +C , we get:
int x^2 e^x dx =x^2e^x - int 2xe^x dx
=x^2e^x - [2xe^x - 2e^x ]+C
=x^2e^x - 2xe^x + 2e^x +C
Then,
int x^3e^x dx = x^3 e^x - 3 int x^2e^xdx .
= x^3 e^x - 3 [x^2e^x - 2xe^x + 2e^x] +C
= x^3 e^x - 3x^2e^x +6xe^x -6 e^x +C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...