Saturday, November 5, 2016

Single Variable Calculus, Chapter 3, Review Exercises, Section Review Exercises, Problem 10

Determine $f'(x)$ of the function $\displaystyle f(x) = \frac{4-x}{3+x}$ using the definition of a derivative.
Using the definition of derivative



$
\begin{equation}
\begin{aligned}
f'(x) &= \lim_{h \to 0} \frac{f(x+h) - f(x) }{h}\\
\\
f'(x) &= \lim_{h \to 0} \frac{\left[\frac{4-(x+h)}{3+x+h}\right] - \left( \frac{4-x}{3+x}\right) }{h}\\
\\
f'(x) &= \lim_{h \to 0} \frac{\frac{4-x-h}{3+x+h}-\frac{4-x}{3+x} }{h}\\
\\
f'(x) &= \lim_{h \to 0} \frac{}{} \frac{\frac{(4-x-h)(3+x)-(3+x+h)(4-x)}{(3+x+h)(3+x)} }{h}\\
\\
f'(x) &= \lim_{h \to 0} \frac{\cancel{12} - \cancel{3x} - 3h + \cancel{4x} - \cancel{x^2} - \cancel{xh} - \cancel{12} + \cancel{3x} - \cancel{4x} + \cancel{x^2} - 4h + \cancel{xh} }{h(3+x+h)(3+x)}\\
\\
f'(x) &= \lim_{h \to 0} \frac{-7\cancel{h}}{\cancel{h} (3+x+h)(3+x)}\\
\\
f'(x) &= \lim_{h \to 0} \left[\frac{-7}{(3+x+h)(3+x)}\right] = \frac{-7}{(3+x+0)(3+x)} = \frac{-7}{(3+x)(3+x)}\\
\\
f'(x) &= \frac{-7}{(3+x)^2}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...