Monday, November 7, 2016

College Algebra, Chapter 9, 9.6, Section 9.6, Problem 38

Determine the second term in the expansion of $\displaystyle \left( x^2 - \frac{1}{x} \right)^{25}$

The $r$th term of the binomial expansion $(a + b)^n$ is defined as

$\displaystyle \left( \begin{array}{c}
n \\
r - 1
\end{array} \right) (a)^{n - r + 1} (b)^{r - 1} $

or

$n C r - 1 (a)^{n - r + 1} (b)^{r - 1}$

In our case, $\displaystyle n = 25, a = x^2, b = \frac{-1}{x}$ and $r = 2$, so the 2nd term is


$
\begin{equation}
\begin{aligned}

=& 25 C_{2 - 1} (x^2)^{25 - 2 + 1} \left(\frac{-1}{x} \right)^{2 - 1}
\\
\\
=& 25 C_1 (x^2)^{24} \left(\frac{-1}{x} \right)^1
\\
\\
=& \frac{25!}{1! (25 - 1)!} x^{48} \left( \frac{-1}{x} \right)
\\
\\
=& -25 x^{47}


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...