Friday, November 18, 2016

College Algebra, Chapter 7, 7.1, Section 7.1, Problem 46

Find the complete solution of the system $
\left\{
\begin{equation}
\begin{aligned}

3x-y + 2z =& -1
\\
4x - 2y + z =& -7
\\
-x + 3y - 2z =& -1

\end{aligned}
\end{equation}
\right.
$


We transform the system into reduced row-echelon form

$\left[ \begin{array}{cccc}
3 & -1 & 2 & -1 \\
4 & -2 & 1 & -7 \\
-1 & 3 & -2 & -1
\end{array} \right]$

$\displaystyle \frac{1}{3} R_1$

$\left[ \begin{array}{cccc}
1 & \displaystyle \frac{-1}{3} & \displaystyle \frac{2}{3} & \displaystyle \frac{-1}{3} \\
4 & -2 & 1 & -7 \\
-1 & 3 & -2 & -1
\end{array} \right]$

$\displaystyle R_2 - 4R_1 \to R_2$

$\left[ \begin{array}{cccc}
1 & \displaystyle \frac{-1}{3} & \displaystyle \frac{2}{3} & \displaystyle \frac{-1}{3} \\
0 & \displaystyle \frac{-2}{3} & \displaystyle \frac{-5}{3} & \displaystyle \frac{-17}{3} \\
-1 & 3 & -2 & -1
\end{array} \right]$

$\displaystyle R_3 + R_1 \to R_3$

$\left[ \begin{array}{cccc}
1 & \displaystyle \frac{-1}{3} & \displaystyle \frac{2}{3} & \displaystyle \frac{-1}{3} \\
0 & \displaystyle \frac{-2}{3} & \displaystyle \frac{-5}{3} & \displaystyle \frac{-17}{3} \\
0 & \displaystyle \frac{8}{3} & \displaystyle \frac{-4}{3} & \displaystyle \frac{-4}{3}
\end{array} \right]$

$\displaystyle \frac{-3}{2} R_2$

$\left[ \begin{array}{cccc}
1 & \displaystyle \frac{-1}{3} & \displaystyle \frac{2}{3} & \displaystyle \frac{-1}{3} \\
0 & 1 & \displaystyle \frac{5}{2} & \displaystyle \frac{17}{2} \\
0 & \displaystyle \frac{8}{3} & \displaystyle \frac{-4}{3} & \displaystyle \frac{-4}{3}
\end{array} \right]$

$\displaystyle R_3 - \frac{8}{3} R_2 \to R_3$

$\left[ \begin{array}{cccc}
1 & \displaystyle \frac{-1}{3} & \displaystyle \frac{2}{3} & \displaystyle \frac{-1}{3} \\
0 & 1 & \displaystyle \frac{5}{2} & \displaystyle \frac{17}{2} \\
0 & 0 & -8 & -24
\end{array} \right]$

$\displaystyle \frac{-1}{8} R_3$

$\left[ \begin{array}{cccc}
1 & \displaystyle \frac{-1}{3} & \displaystyle \frac{2}{3} & \displaystyle \frac{-1}{3} \\
0 & 1 & \displaystyle \frac{5}{2} & \displaystyle \frac{17}{2} \\
0 & 0 & 1 & 3
\end{array} \right]$

$\displaystyle R_2 - \frac{5}{2} R_3 \to R_2$

$\left[ \begin{array}{cccc}
1 & \displaystyle \frac{-1}{3} & \displaystyle \frac{2}{3} & \displaystyle \frac{-1}{3} \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 3
\end{array} \right]$

$\displaystyle R_1 - \frac{2}{3} R_3 \to R_1$

$\left[ \begin{array}{cccc}
1 & \displaystyle \frac{-1}{3} & 0 & \displaystyle \frac{-7}{3} \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 3
\end{array} \right]$

$\displaystyle R_1 + \frac{1}{3} R_2 \to R_1$

$\left[ \begin{array}{cccc}
1 & 0 & 0 & -2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 3
\end{array} \right]$

We now have an equivalent matrix in reduced row-echelon form, and the system of equations is


$
\left\{
\begin{equation}
\begin{aligned}

x =& -2
\\
\\
y =& 1
\\
\\
z =& 3

\end{aligned}
\end{equation}
\right.
$


We can write the solution as the ordered triple $(-2, 1, 3)$.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...