Tuesday, November 15, 2016

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 59

Determine all the points on the graph of the function $f(x) = 2 \sin x + \sin ^2 x $ at which the tangent line is horizontal.


$
\begin{equation}
\begin{aligned}

f'(x) = m =& \frac{d}{dx} (2 \sin x + \sin ^2 x )
\qquad \qquad \text{Where $m = 0$ because tangent line is horizontal}
\\
\\
m =& 2 \frac{d}{dx} (\sin x) + \frac{d}{dx} (\sin x)^2
\\
\\
m =& 2 \cos x + 2 \sin x \cdot \frac{d}{dx} (\sin x)
\\
\\
m =& 2 \cos x (1 + \sin x)
\\
\\
0 =& 2 \cos x (1 + \sin x)



\end{aligned}
\end{equation}
$


$
\begin{array}{c||c}
2 \cos x = 0 & \sin x + 1 = 0 \\
\displaystyle \frac{2 \cos x}{2} = \frac{0}{2} & \sin x = -1 \\
\cos x = 0 &
\end{array}
$

Using the Unit Circle Diagram







$\displaystyle x = \frac{\pi}{2} + 2 \pi n, \qquad \qquad x = \frac{3 \pi}{2} + 2 \pi n \qquad \qquad$ (where $2 \pi n$ refers to the succeeding periods where $n$ is any number)

Solving for $y$


$
\begin{equation}
\begin{aligned}

f \left( \frac{\pi}{2} \right) =& 2 \sin x + \sin^2 x
\\
\\
f \left( \frac{\pi}{2} \right) =& 2 \sin \left( \frac{\pi}{2} \right) + \sin ^2 \left( \frac{\pi}{2} \right)
\\
\\
f \left( \frac{\pi}{2} \right) =& 2 + 1
\\
\\
f \left( \frac{\pi}{2} \right) =& 3
\\
\\
f \left( \frac{3 \pi}{2} \right) =& 2 \sin x + \sin ^2 (x)
\\
\\
f \left( \frac{3 \pi}{2} \right) =& 2 \sin \left( \frac{3 \pi}{2} \right) + \sin ^2 \left( \frac{3 \pi}{2} \right)
\\
\\
f \left( \frac{3 \pi}{2} \right) =& -2 + 1
\\
\\
f \left( \frac{3 \pi}{2} \right) =& -1

\end{aligned}
\end{equation}
$


The points on the given function which the tangent is horizontal are $\displaystyle \left( \frac{3 \pi}{2} + 2 \pi n, -1 \right) $.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...