Wednesday, November 2, 2016

log_6(3x)+log_6(x-1)=3 Solve the equation. Check for extraneous solutions.

To evaluate the given equation log_6(3x)+log_6(x-1)=3 , we may apply the logarithm property: log_b(x)+log_b(y)=log_b(x*y) .
log_6(3x)+log_6(x-1)=3
log_6(3x*(x-1))=3
log_6(3x^2-3x)=3
To get rid of the "log" function, we may apply the logarithm property: b^(log_b(x))=x .
Raise both sides by base of 6 .
6^(log_6(3x^2-3x))=6^3
3x^2-3x=216
Subtract 216 from both sides of the equation to simplify in standard form: ax^2+bx+c= 0 .
3x^2-3x-216=216-216
3x^2-3x-216=0
Apply factoring on the trinomial.
3*(x + 8)*(x - 9)=0
Apply zero-factor property to solve for x by equating each factor in terms of x to 0 .
x+8-8=0-8
x=-8
 
x-9=0
x-9+9=0+9
x=9
Checking: Plug-in each x on  log_6(3x)+log_6(x-1)=3 .
Let x=-8 on log_6(3x)+log_6(x-1)=3 .
log_6(3*(-8))+log_6(-8-1)=?3
log_6(-24)+log_6(-9)=?3
undefined +undefined =?3     FALSE
Note that log_b(x) is undefined on xlt=0 .
Let x=9 on log_6(3x)+log_6(x-1)=3 .
log_6(3*9)+log_6(9-1)=?3
log_6(27)+log_6(8)=?3
log_6(27*8)=?3
log_6(216)=?3
log_6(6^3)=?3
3log_6(6)=?3
3*1=?3
3=3    TRUE
 
Thus, the x=-8 is an extraneous solution.
The x=9 is the only real solution of the equation log_6(3x)+log_6(x-1)=3 .

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...