Tuesday, February 9, 2016

sum_(n=1)^oo 1/2^n Confirm that the Integral Test can be applied to the series. Then use the Integral Test to determine the convergence or divergence of the series.

Recall the Integral test is applicable if f is positive and decreasing function on interval [k,oo) where kgt=1 and a_n = f(x) . 
If int_k^oo f(x) dx is convergent then the series sum_(n=k)^oo a_n is also convergent.
If int_k^oo f(x) dx is divergent then the series sum_(n=k)^oo a_n is also divergent.
For the  series sum_(n=1)^oo 1/2^n , we have a_n=1/2^n then we may let the function: 
f(x) = 1/2^x with a graph of:

 
As shown on the graph, f(x) is positive and decreasing on the interval [1,oo) . This confirms that we may apply the Integral test to determine the converge or divergence of a series as:
int_1^oo 1/2^x dx =lim_(t-gtoo)int_1^t 1/2^x dx
To evaluate the integral of int_1^t 1/2^x dx , we may Law of exponent: 1/x^n = x^(-n) .
int_1^t 1/2^x dx =int_1^t 2^(-x) dx
To determine the indefinite integral of  int_1^t 2^(-x) dx , we may apply u-substitution by letting: u =-x then du = -dx or -1du =dx .
The integral becomes:
int 2^(-x) dx =int 2^u * -1 du
                  = - int 2^u du
Apply integration formula for exponential function: int a^u du = a^u/ln(a) +C where a is constant.
- int 2^u du =- 2^u/ln(2)
Plug-in u =-x on - 2^u/ln(2) , we get: 
int_1^t 1/2^x dx= -2^(-x)/ln(2)|_1^t
              = - 1/(2^xln(2))|_1^t
Applying definite integral formula: F(x)|_a^b = F(b)-F(a) .
- 1/(2^xln(2))|_1^t = [- 1/(2^tln(2))] - [- 1/(2^1ln(2))]
                  =- 1/(2^tln(2)) + 1/(2ln(2))
                =- 1/(2^tln(2)) + 1/ln(4)
Note: 2 ln(2)= ln(2^2) = ln(4)
Apply int_1^t 1/2^x dx=- 1/(2^tln(2)) + 1/ln(4) , we get:
lim_(t-gtoo)int_1^t 1/2^x dx=lim_(t-gtoo)[- 1/(2^tln(2)) + 1/ln(4)]
                        =lim_(t-gtoo)- 1/(2^tln(2)) +lim_(t-gtoo) 1/ln(4)
                        = 0 +1/ln(4)
                          =1/ln(4)
 
Note:  2^oo =oo and oo*ln(2) =oo then 1/oo = 0
The lim_(t-gtoo)int_1^t 1/2^x=1/ln(4) implies the integral converges.
Conclusion:

The integralint_1^oo1/2^x dx is convergent therefore the series sum_(n=1)^oo 1/2^n must also be convergent.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...