Monday, February 22, 2016

Intermediate Algebra, Chapter 4, 4.2, Section 4.2, Problem 46

Solve each system $
\begin{equation}
\begin{aligned}

x - 3y + 7z + w =& 11 \\
2x + 4y + 6z - 3w =& -3 \\
3x + 2y + z + 2w =& 19 \\
4x + y - 3z + w =& 22

\end{aligned}
\end{equation}
$ by expressing the solution in the form $(x,y,z,w)$.


$
\begin{equation}
\begin{aligned}

3x - 9y + 21z + 3w =& 33
&& 3 \times \text{ Equation 1}
\\
2x + 4y + 6z - 3w =& -3
&& \text{Equation 2}
\\
\hline

\end{aligned}
\end{equation}
$




$
\begin{equation}
\begin{aligned}

5x - 5y + 27z \phantom{-3w} =& 30
&& \text{Add; New equation 2}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

-2x + 6y - 14z - 2w =& -22
&& -2 \times \text{ Equation 1}
\\
3x + 2y + z + 2w =& 19
&& \text{Equation 3}
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

x + 8y - 13z \phantom{+2w} =& -3
&& \text{Add; New equation 3}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

-x + 3y - 7z - w =& -11
&& -1 \times \text{ Equation 1}
\\
4x + y - 3z + w =& 22
&& \text{Equation 4}
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

3x + 4y - 10z \phantom{+w} =& 11
&& \text{Add; New Equation 4}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

65x - 65y + 351z =& 390
&& 13 \times \text{ New Equation 2}
\\
27x + 216y - 315z =& -81
&& 27 \times \text{ New Equation 3}
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

92x + 151y \phantom{-351z} =& 309
&& \text{Add; New Equation 3}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

50x - 50y + 270z =& 300
&& 10 \times \text{ New Equation 2}
\\
81x + 108y - 270z =& 297
&& 27 \times \text{ New Equation 4}
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

131x + 58y \phantom{-270z} =& 597
&& \text{Add; New Equation 4}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

92x + 151y =& 309
&& \text{Equation 3}
\\
131x + 58y =& 597
&& \text{Equation 4}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

-5336x - 8758y =& -17922
&& -58 \times \text{ Equation 3}
\\
19781x + 8758y =& 90147
&& 151 \times \text{ Equation 4}
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

14445x \phantom{+8758y} =& 72225
&& \text{Add}
\\
x =& 5
&& \text{Divide each side by $14445$}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

92(5) + 151y =& 309
&& \text{Substitute } x = 5 \text{ in New Equation 3}
\\
460 + 151y =& 309
&& \text{Multiply}
\\
151y =& -151
&& \text{Subtract each side by $460$}
\\
y =& -1
&& \text{Divide each side by $151$}

\end{aligned}
\end{equation}
$




$
\begin{equation}
\begin{aligned}

5 + 8(-1) - 13z =& -3
&& \text{Substitute } x = 5 \text{ and } y = -1 \text{ in Equation 1}
\\
5 - 8 - 13z =& -3
&& \text{Multiply}
\\
-3 - 13z =& 0
&& \text{Combine like terms}
\\
-13z =& 2
&& \text{Add each side by $3$}
\\
z =& 0
&& \text{Divide each side by $-13$}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

5 - 3(-1) + 7(0) + w =& 11
&& \text{Substitute } x = 5, y = -1 \text{ and } z = 0 \text{ in Equation 1}
\\
5 + 3 + 0 + w =& 11
&& \text{Multiply}
\\
8 + w =& 11
&& \text{Combine like terms}
\\
w =& 3
&& \text{Subtract each side by $8$}

\end{aligned}
\end{equation}
$


The solution set is $\displaystyle \left \{ (5,-1,0,3) \right \}$.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...