Friday, February 12, 2016

sum_(n=2)^oo lnn/n^3 Determine the convergence or divergence of the series.

To evaluate the series sum_(n=2)^oo ln(n)/n^3 , we may apply Direct Comparison test.
Direct Comparison test is applicable when sum a_n and sum b_n are both positive series for all n where a_n lt=b_n .
If sum b_n converges then sum a_n converges.
If sum a_n diverges so does the sum b_n diverges.
Let b_n=1/n^2 and a_n =ln(n)/n^3  
It follows that a_n < b_n
Graph: 
Note: f(x) =1/x^2 for red graph and g(x)=ln(x)/x^3  for green graph.
Apply the p-series test where kgt0 : the sum_(n=k)^oo 1/n^p is convergent if pgt1 and divergent if plt=1 .
For the sum_(n=2)^oo 1/n^2 , we have the corresponding value p=2 . It satisfies the condition pgt1 since 2gt1 .Therefore, the series sum_(n=2)^oo 1/n^2 converges.
Conclusion:
Because a_n < b_n and sum b_n converges, then sum a_n = sum_(n=2)^oo lnn/n^3 converges

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...