Thursday, February 18, 2016

College Algebra, Chapter 1, 1.4, Section 1.4, Problem 28

Evaluate the expression $\displaystyle \left( \frac{2}{3} + 12i \right) \left( \frac{1}{6} + 24i \right)$ in the form of $a + bi$.


$
\begin{equation}
\begin{aligned}
&= \left( \frac{2}{3} + 12i \right) \left( \frac{1}{6} + 24i \right)\\
\\
&= \left( \frac{2}{3} \right) \left( \frac{1}{6} \right) + \frac{2}{3} (64i) + 12i \left( \frac{1}{6} \right) + (12i) (24i) && \text{Use FOIL method}\\
\\
&= \frac{1}{9} + \frac{128i}{3} + 2i + 288 i^2 && \text{Evaluate}\\
\\
&= \frac{1}{9} + \frac{128i}{3} + 2i + 288 (-1) && \text{recall that } i^2 = -1\\
\\
&= \left( \frac{1}{9} - 288 \right) + \left( \frac{128}{3} + 2 \right)i && \text{Combine like terms}\\
\\
&= \frac{-2591}{9} + \frac{134}{3}i && \text{Simplify}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...