Tuesday, February 9, 2016

Single Variable Calculus, Chapter 4, 4.5, Section 4.5, Problem 6

Use the guidelines of curve sketching to sketch the curve. $y = x(x+2)^3$

The guidelines of Curve Sketching
A. Domain.
We know that $f(x)$ is a polynomial having a domain of $(-\infty, \infty)$

B. Intercepts.
Solving for $y$-intercept, when $x=0$.
$ y = (0)(0+2)^3 = 0$
Solving for $x$-intercept, when $y = 0$.
$0 = x(x+2)^3$
We have, $x = 0 $ and $x +2 = 0$
The $x$-intercepts are, $x = 0 $ and $x = -2$


C. Symmetry.
The function is not symmetric to $y$-axis and origin by using symmetry test.


D. Asymptotes.
None, the function has no denominator.


E. Intervals of Increase or Decrease.
If we take the derivative of $f(x)$, by using Product and Chain Rule.

$
\begin{equation}
\begin{aligned}
f'(x) &= x \cdot 3 (x+2)^2 + (x+2)^3 \cdot (1)\\
\\
f'(x) &= (x+2)^2 (3x + (x+2))\\
\\
f'(x) &= (x+2)^2(4x+2)
\end{aligned}
\end{equation}
$

When $f'(x) = 0$, $0 = (x+2)^2(4x+2)$
We have, $0 = (x+2)^2$ and $4x + 2 = 0$
The critical numbers are, $x = -2$ and $\displaystyle x = \frac{-1}{2}$

So, the intervals of increase or decrease are...

$
\begin{array}{|c|c|c|}
\hline\\
\text{Interval} & f'(x) & f\\
\hline\\
x < -2 & + & \text{increasing on } (-\infty, -2)\\
\hline\\
-2 < x < \frac{-1}{2} & - & \text{decreasing on } (-2, \frac{-1}{2})\\
\hline\\
x > \frac{-1}{2} & + & \text{increasing on } (\frac{-1}{2}, \infty)\\
\hline
\end{array}
$

F. Local Maximum and Minimum Values.
Since $f'(x)$ changes from positive to negative at $x = -2$, $f(-2) = 0$ is a local maximum. On the other hand, since $f'(x)$ changes from negative to positive at $\displaystyle x = \frac{-1}{2}, f \left( \frac{-1}{2} \right) = -1.6875$ is a local minimum.

G. Concavity and Points of Inflection.

$
\begin{equation}
\begin{aligned}
\text{if } f'(x) &= (x+2)^2 (4x+2), \text{ then }\\
\\
f''(x) &= 2(x+2)(4x+2) + (x+2)^2 (4)\\
\\
\\
\\
\text{which can be simplified as, }\\
\\
f''(x) &= 12(x^2 + 3x+2)\\
\\
\text{when } f''(x) &= 0, \\
\\
0 &= 12(x^2 + 3x +2)
\end{aligned}
\end{equation}
$

The inflection point is at $x = -1$ and $x = -2$
Thus, the concavity can be determined by dividing the interval to...

$
\begin{array}{|c|c|c|}
\hline\\
\text{Interval} & f''(x) & \text{Concavity}\\
\hline\\
x < - 2 & + & \text{Upward}\\
\hline\\
-2 < x < -1 & - & \text{Downward}\\
\hline\\
x > -1 & + & \text{Upward}\\
\hline
\end{array}
$



H. Sketch the Graph.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...