Wednesday, January 1, 2014

Single Variable Calculus, Chapter 4, 4.3, Section 4.3, Problem 54

Show that all of the inflection points of $\displaystyle y = \frac{(1+x)}{(1+x^2)}$ lie on one straight line.

To get the inflection points, we set $f''(x) = 0$ and some for the solution, so...
if $\displaystyle y = \frac{(1+x)}{(1+x^2)}$, then

By using Quotient Rule,

$
\begin{equation}
\begin{aligned}
y' &= \frac{(1+x^2)(1) - (1+x)(2x)}{(1+x^2)^2}\\
\\
y' &= \frac{1+x^2 - 2x -2x^2}{(1+x^2)^2}\\
\\
y' &= \frac{-x^2 - 2x + 1}{(1+x^2)^2}
\end{aligned}
\end{equation}
$


Again, by using Quotient Rule as well as Chain Rule

$
\begin{equation}
\begin{aligned}
y '' &= \frac{(1+x^2)^2 (-2x-2) - (-x^2-2x+1) \left( 2(1+x^2)(2x) \right)}{\left[ (1+x^2)^2\right]^2}\\
\\
y'' &= \frac{2(x-1)(x^2+4x+1)}{(1+x^2)^3}
\end{aligned}
\end{equation}
$


when $y'' = 0$

$
\begin{equation}
\begin{aligned}
0 & = \frac{2(x-1)(x^2+4x+1)}{(1+x^2)^3}\\
\\
0 & = 2(x-1)(x^2+4x+1)
\end{aligned}
\end{equation}
$


We have,
$x - 1 = 0$ and $x^2 + 4x + 1 = 0$ (by using Quadratic Formula)
$x = 1 $ and $x = -2 \pm \sqrt{3}$

Let's evaluate $f(x)$ with these inflection points. So,

$
\begin{equation}
\begin{aligned}
\text{when } x & =1 &&& \text{when } x &= -2 + \sqrt{3},\\
\\
y (1) &= \frac{1+1}{1+1^2} = 1 &&& y(-2+\sqrt{3}) &= \frac{1 + (-2+\sqrt{3})}{1 + (-2+\sqrt{3})^2} = \frac{1+\sqrt{3}}{4}\\
\\
\text{when } x &= 2 - \sqrt{3}\\
\\
y (2 - \sqrt{3}) &= \frac{1+ (-2 - \sqrt{3}) }{1 + (-2 - \sqrt{3})^2} = \frac{1-\sqrt{3}}{4}
\end{aligned}
\end{equation}
$

If we get the equation of the line that pass through points (1,1) and $\displaystyle \left(-2+\sqrt{3},\frac{1+\sqrt{3}}{4} \right)$ by using point slope form..
$\displaystyle y- y_1 = \frac{y_2-y_1}{x_2-x_1} (x-x_1)$

$
\begin{equation}
\begin{aligned}
y -1 &= \frac{\frac{1+\sqrt{3}}{4}-1}{-2 + \sqrt{3}-1} (x-1)\\
\\
y &= \frac{1}{4} (x - 1) + 1\\
\\
y &= \frac{x}{4} + \frac{3}{4}
\end{aligned}
\end{equation}
$


If we substitute the point $\displaystyle \left( 2-\sqrt{3}, 1- \frac{\sqrt{3}}{4}\right)$ to the equation of the line.

$
\begin{equation}
\begin{aligned}
1 - \frac{\sqrt{3}}{4} &= \frac{2-\sqrt{3}}{4} + \frac{3}{4}\\
\\
1 - \frac{\sqrt{3}}{4} &= 1 - \frac{\sqrt{3}}{4}
\end{aligned}
\end{equation}
$

Notice that the points $\displaystyle \left( 2-\sqrt{3}, 1- \frac{\sqrt{3}}{4}\right)$ is also a solution of the tangent line. Therefore, we can say that all the inflection points lie on the same line

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...