Thursday, January 30, 2014

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 41

Differentiate $\displaystyle f(x) = \frac{x }{x + \displaystyle \frac{c}{x}} $



$
\begin{equation}
\begin{aligned}

f(x) =& \frac{x }{x + \displaystyle \frac{c}{x}}
&& \text{Get the LCD on the denominator}
\\
\\
f(x) =& \frac{x}{\displaystyle \frac{x^2 + c}{x}}
&& \text{Simplify the equation}
\\
\\
f(x) =& \frac{x^2}{x^2 + c}
&& \text{}
\\
\\
f'(x) =& \frac{(x^2 + c) \displaystyle \frac{d}{dx} (x^2) - \left[ (x^2) \frac{d}{dx} (x^2 + c) \right]}{(x^2 + c)^2}
&& \text{Apply Quotient Rule}
\\
\\
f'(x) =& \frac{(x^2 + c) (2x) - [(x^2)(2x)]}{(x^2 + c)^2}
&& \text{Expand the equation}
\\
\\
f'(x) =& \frac{\cancel{2x^3} + 2cx - \cancel{2x^3}}{(x^2 + c)^2}
&& \text{Combine like terms}
\\
\\
f'(x) =& \frac{2cx}{(x^2 + c)^2}
&& \text{}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...