Wednesday, January 29, 2014

Calculus and Its Applications, Chapter 1, 1.7, Section 1.7, Problem 54

Determine $\displaystyle \frac{dy}{dx}$ for $y =\sqrt{7 - 3u}$ and $u = x^2 - 9$.

We have $\displaystyle \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ with


$
\begin{equation}
\begin{aligned}

\frac{dy}{du} =& \frac{1}{2} (7-3u)^{\frac{-1}{2}} \cdot \frac{d}{du} (7-3u)
\qquad \text{ and } &&& \frac{du}{dx} =& \frac{d}{dx} (x^2) - \frac{d}{dx} (9)
\\
\\
=& \frac{1}{2} (7 - 3u)^{\frac{-1}{2}} (-3) &&& =& 2x
\\
\\
=& \frac{-3}{2(7-3u)^{\frac{1}{2}}}

\end{aligned}
\end{equation}
$



Thus,


$
\begin{equation}
\begin{aligned}

\frac{dy}{dx} = \frac{-3}{2(7 - 3u)^{\frac{1}{2}}} \cdot 2x
\\
=& \frac{-3x}{(7 - 3u)^{\frac{1}{2}}}
\\
=& \frac{-3x}{[7-3(x^2 - 9)]^{\frac{1}{2}}}
\qquad \text{Substitute $x^2 - 9$ for $u$}
\\
=& \frac{-3x}{(7 - 3x^2 + 27)^{\frac{1}{2}}}
\\
=& \frac{-3x}{(34 - 3x^2)^{\frac{1}{2}}}


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...