Tuesday, January 21, 2014

Single Variable Calculus, Chapter 8, 8.1, Section 8.1, Problem 30

Evaluate $\displaystyle \int^1_0 \frac{r^3}{\sqrt{4 + r^2}} dr$ by using Integration by parts.
If we let $u = r^2$ and $\displaystyle dv = \frac{r dr}{\sqrt{4+r^2}}$, then
$du - 2r d$ and $\displaystyle v = \int \frac{rdr}{\sqrt{4+r^2}}$

To evaluate $\displaystyle \int \frac{rdr}{\sqrt{4+r^2}}$, we let $u_1 = 4 + r^2$, then $du_1 = 2rdr$

So,

$
\begin{equation}
\begin{aligned}
\int \frac{rdr}{\sqrt{4+r^2}} = \int \frac{du_1}{2} \left( \frac{1}{\sqrt{u_1}} \right) &= \frac{1}{2} \int \left( u_1^{-\frac{1}{2}} \right) du_1\\
\\
&= \frac{1}{2} \frac{u^{\frac{1}{2}}}{\frac{1}{2}}\\
\\
&= \sqrt{4+r^2}
\end{aligned}
\end{equation}
$


Hence, from integration by parts

$
\begin{equation}
\begin{aligned}
\int^1_0 \frac{r^3}{\sqrt{4+r^2}} dr = uv - \int v du &= r^2 \sqrt{4+r^2} - \int \left( \sqrt{4+r^2}\right)(2r dr)\\
\\
&= r^2 \sqrt{4+r^2} -2 \int r \sqrt{4+r^2} dr
\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}
\text{if we let } u_2 &= 4 + r^2 \text{ , then}\\
\\
du_2 &= 2r dr
\end{aligned}
\end{equation}
$


So,

$
\begin{equation}
\begin{aligned}
\int r \sqrt{4 + r^2} dr = \int \sqrt{u_2} \left( \frac{du_2}{2} \right) &= \frac{1}{2} \int (u_2)^{\frac{1}{2}} du_2\\
\\
&= \frac{1}{2} \frac{(u)^{\frac{3}{2}}}{\frac{3}{2}}\\
\\
&= \frac{(4+r^2)^{\frac{3}{2}}}{3}
\end{aligned}
\end{equation}
$


Therefore,
$\displaystyle \int^1_0 \frac{r^3}{\sqrt{4+r^2}} dr = r^2 \sqrt{4 + r^2} - 2 \left[ \frac{(4+r^2)^{\frac{3}{2}}}{3} \right]$
Evaluating from $x = 0$ to $x = 1$,
$\displaystyle \int^1_0 \frac{r^3}{\sqrt{4 + r^2}} = \frac{16-7\sqrt{5}}{3}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...