Friday, January 3, 2014

Calculus of a Single Variable, Chapter 3, 3.4, Section 3.4, Problem 26

f(x)=2csc((3x)/2)
differentiating,
f'(x)=-2csc(3x/2)cot(3x/2)*(3/2)
f'(x)=-3csc(3x/2)cot(3x/2)
differentiating again,
f''(x)=-3(csc(3x/2)d/dxcot(3x/2)+cot(3x/2)d/dxcsc(3x/2))
f''(x)=-3(csc(3x/2)(-csc^2(3x/2)*(3/2))+cot(3x/2)(-csc(3x/2)cot(3x/2)*(3/2))
f''(x)=-3(-3/2csc^3(3x/2)-3/2csc(3x/2)cot^2(3x/2))
f''(x)=9/2csc(3x/2)(csc^2(3x/2)+cot^2(3x/2))
f''(x)=9/2csc(3x/2)(1+2cot^2(3x/2))
Now let us find out x for which f''(x)=0,
csc(3x/2)=0 , No value of x exists for which csc(3x/2)=0
1+2cot^2(3x/2)=0
cot^2(3x/2)=-1/2
So no solution exists.
So,f''(x) is undefined for x=0
Now let us test the concavity of the function by taking test value of -pi/2 and pi/2.
f''(-pi/2)=9/2csc(-3pi/4)(1+2cot^2(-3pi/4))
f''(-pi/2)=9/2(-sqrt(2))(1+2)
f''(-pi/2)=-27/2(sqrt(2))
f''(pi/2)=9/2csc(3pi/4)(1+2cot^2(3pi/4))
f''(pi/2)=9/2(sqrt(2)(1+2)
f''(pi/2)=27/2sqrt(2)
Though the concavity of the function is changing, but that does not mean that the inflection point exists at x=0, since the function is not defined at x=0.
Therefore the inflection points do not exist for the function.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...