Tuesday, May 28, 2013

Single Variable Calculus, Chapter 3, 3.2, Section 3.2, Problem 47

Suppose that $f(x) = \sqrt[3]{x}$, find $f'(x), f''(x), f'''(x)$ and $f^4(x)$. Graph $f, f', f''$ and $f'''$ on a common screen. Are the graphs consistent with the geometric interpretations of these derivatives?

a.) Let $a \neq 0$, use the definition of derivative $\displaystyle f'(a) = \lim\limits_{x \to a} \frac{f(x) - f(a)}{x - a}$ to find $f'(a)$.

Using the definition of derivative


$
\begin{equation}
\begin{aligned}


\qquad f'(a) =& \lim_{x \to a} \frac{\sqrt[3]{x} - \sqrt[3]{a}}{x - a} \cdot \frac{\sqrt[3]{x^2} + \sqrt[3]{ax} + \sqrt[3]{a^2}}{\sqrt[3]{x^2} + \sqrt[3]{ax} + \sqrt[3]{a^2}}
&& \text{Multiply both numerator and denominator by $\sqrt[3]{x^2} + \sqrt[3]{ax} + \sqrt[3]{a^2}$}
\\
\\
\qquad f'(a) =& \lim_{x \to a} \frac{x + \cancel{\sqrt[3]{ax^2}} + \cancel{\sqrt[3]{a^2x}} - \cancel{\sqrt[3]{ax^2}} + \cancel{\sqrt[3]{a^2x}} - a}{(x - a)(\sqrt[3]{x^2} + \sqrt[3]{ax} + \sqrt[3]{a^2})}
&& \text{Combine like terms}
\\
\\
\qquad f'(a) =& \lim_{x \to a} \frac{\cancel{x - a}}{\cancel{(x - a)}(\sqrt[3]{x^2} + \sqrt[3]{ax} + \sqrt[3]{a^2}) }
&& \text{Cancel out like terms}
\\
\\
\qquad f'(a) =& \lim_{x \to a} \left( \frac{1}{\sqrt[3]{x^2} + \sqrt[3]{ax} + \sqrt[3]{a^2}} \right) = \frac{1}{\sqrt[3]{a^2} + \sqrt[3]{(a)(a)} + \sqrt[3]{a^2}}
&& \text{Evaluate the limit}
\\
\\
f'(a) =& \frac{1}{\sqrt[3]{a^2} + \sqrt[3]{a^2} + \sqrt[3]{a^2}}
&& \text{Combine like terms}
\\
\\
f'(a) =& \frac{1}{3 \sqrt[3]{a^2}} \text{ or } \frac{1}{3(a)^{\frac{2}{3}}}
&&

\end{aligned}
\end{equation}
$



b.) Prove that $f'(0)$ does not exist

Using $f'(a)$ in part (a)


$
\begin{equation}
\begin{aligned}

f'(a) =& \frac{1}{3 \sqrt[3]{a^2}}
\\
\\
f'(0) =& \frac{1}{3 \sqrt[3]{(0)^2}}
\\
\\
f'(0) =& \frac{1}{3(0)} = \frac{1}{0}

\end{aligned}
\end{equation}
$


Therefore, $f'(0)$ does not exist because denominator is zero.

c.) Prove that $y = \sqrt[3]{x}$ has a vertical tangent line at $(0,0)$

If the function has a vertical tangent line at $x = 0, \lim_{x \to 0} f'(x) = \infty$

Given that $f'(x) = \displaystyle \frac{1}{3 \sqrt[3]{x^2}}$

Suppose that we substitute a value closer to from left and right to the limit of $f'(x)$. Let's say $x = -0.00001$ and $x = 0.000001$


$
\begin{equation}
\begin{aligned}

& \lim_{x \to 0^-} \frac{1}{3\sqrt[3]{(-0.00001)^2}} = 2154.43
\\
\\
& \lim_{x \to 0^+} \frac{1}{3 \sqrt[3]{(0.0000001)^2}} = 46415.89

\end{aligned}
\end{equation}
$


This means that where $x$ gets closer and closer to , the value of limit approached a very large number. The tangent line with these values become steeper and steeper as $x \to 0$ until such time that the tangent line becomes a vertical line at $x = 0$.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...