Saturday, May 4, 2013

College Algebra, Chapter 7, Review Exercises, Section Review Exercises, Problem 8

Find the complete solution of the system
$
\left\{\begin{equation}
\begin{aligned}

x - y + z =& 2
\\
x + y + 3z =& 6
\\
2y + 3z =& 5

\end{aligned}
\end{equation} \right.
$
using Gaussian Elimination.

For this system we have

$\displaystyle \left[ \begin{array}{cccc}
1 & -1 & 1 & 2 \\
1 & 1 & 3 & 6 \\
0 & 2 & 3 & 5
\end{array} \right]$

$R_2 - R_1 \to R_2$

$\displaystyle \left[ \begin{array}{cccc}
1 & -1 & 1 & 2 \\
0 & 2 & 2 & 4 \\
0 & 2 & 3 & 5
\end{array} \right]$

$\displaystyle \frac{1}{2} R_2$

$\displaystyle \left[ \begin{array}{cccc}
1 & -1 & 1 & 2 \\
0 & 1 & 1 & 2 \\
0 & 2 & 3 & 5
\end{array} \right]$

$R_3 - 2R_2 \to R_3$

$\displaystyle \left[ \begin{array}{cccc}
1 & -1 & 1 & 2 \\
0 & 1 & 1 & 2 \\
0 & 0 & 1 & 1
\end{array} \right]$

Now we have equivalent matrix in row-echelon form and the corresponding system is


$
\left\{
\begin{equation}
\begin{aligned}

x - y + z =& 2
\\
y + z =& 2
\\
z =& 1

\end{aligned}
\end{equation}
\right.
$


Then we back-substitute $z = 1$ into the second equation and solve for $y$


$
\begin{equation}
\begin{aligned}

y + 1 =& 2
&& \text{Back-substitute } z= 1
\\
y =& 1
&& \text{Subtract } 1

\end{aligned}
\end{equation}
$


Now we back-substitute $y=1$ and $z=1$ into the first equation and solve for $x$


$
\begin{equation}
\begin{aligned}

x -1 + 1 =& 2
&& \text{Back-substitute } y = 1 \text{ and } z = 1
\\
x =& 2
&& \text{Simplify}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...