Monday, April 1, 2013

Single Variable Calculus, Chapter 5, Review Exercises, Section Review Exercises, Problem 30

Find the indefinite integral $\displaystyle \int \frac{x^3}{\sqrt{x^2 + 1}} dx$. Illustrate by graphing both the function and its antiderivative (take $C =0$).
If we let $u = x^2 +1$, then $du = 2x dx$, so $\displaystyle x dx = \frac{du}{2}$. Also $x^2 = u - 1$. Thus,

$
\begin{equation}
\begin{aligned}
\int \frac{x^3}{\sqrt{x^2 + 1}} dx &= \int \frac{x^2}{\sqrt{x^2 + 1}} x dx\\
\\
\int \frac{x^3}{\sqrt{x^2 + 1}} dx &= \int \frac{u- 1}{\sqrt{u}} \frac{du}{2}\\
\\
\int \frac{x^3}{\sqrt{x^2 + 1}} dx &= \frac{1}{2} \int \frac{u - 1}{\sqrt{u}} du\\
\\
\int \frac{x^3}{\sqrt{x^2 + 1}} dx &= \frac{1}{2} \int \frac{u}{u^{\frac{1}{2}}} - \frac{1}{u^{\frac{1}{2}}} du \\
\\
\int \frac{x^3}{\sqrt{x^2 + 1}} dx &= \frac{1}{2} \left( \frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1} - \frac{u^{\frac{-1}{2}+1}}{\frac{-1}{2}+1} \right) + C\\
\\
\int \frac{x^3}{\sqrt{x^2 + 1}} dx &= \frac{1}{2} \left( \frac{u^{\frac{3}{2}}}{\frac{3}{2}} - \frac{u^{\frac{1}{2}}}{\frac{1}{2}} \right) + C\\
\\
\int \frac{x^3}{\sqrt{x^2 + 1}} dx &= \frac{1}{2} \left( \frac{2u^{\frac{3}{2}}}{3} - 2u^{\frac{1}{2}} \right) + C\\
\\
\int \frac{x^3}{\sqrt{x^2 + 1}} dx &= \frac{u^{\frac{3}{2}}}{3} - u^{\frac{1}{2}} + C\\
\\
\text{but } c = 0 \text{ ,so we have}\\
\\
\int \frac{x^3}{\sqrt{x^2 + 1}} dx &= \frac{u^{\frac{3}{2}}}{3} - u^{\frac{1}{2}} + C\\
\\
\int \frac{x^3}{\sqrt{x^2 + 1}} dx &= \frac{\left( x^2 + 1 \right)^{\frac{3}{2}}}{3} - \sqrt{x^2 + 1}
\end{aligned}
\end{equation}
$


Graph the function $\displaystyle f(x) = \frac{\left( x^2 + 1 \right)^{\frac{3}{2}}}{3} - \sqrt{x^2 + 1}$



Graph of antiderivative $\displaystyle f'(x) = \frac{x^3}{\sqrt{x^2 + 1}}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...