Sunday, April 21, 2013

Calculus of a Single Variable, Chapter 8, 8.3, Section 8.3, Problem 11

To solve the indefinite integral, we follow int f(x) dx = F(x) +C
where:
f(x) as the integrand function
F(x) as the antiderivative of f(x)
C as the constant of integration.
For the given integral problem: int x sin^2(x) dx, we may apply integration by parts: int u *dv = uv - int v *du .
We may let:
u = x then du =1 dx or dx
dv= sin^2(x) dx then v = x/2 - sin(2x)/4
Note: From the table of integrals, we have int sin^2(ax) dx = x/2 - sin(2ax)/(4a) . We apply this on v =int dv =intsin^2(x) dx where a =1 .
Applying the formula for integration by parts, we have:
int x sin^2(x) dx= x*(x/2 - sin(2x)/4 ) - int (x/2 - sin(2x)/4 ) dx
=x^2/2 - (xsin(2x))/4 - int (x/2 - sin(2x)/4 ) dx
For the integral: int (x/2 - sin(2x)/4 ) dx , we may apply the basic integration property: : int (u-v) dx = int (u) dx - int (v) dx .

int (x/2 - sin(2x)/4 ) dx =int (x/2) dx -int sin(2x)/4 ) dx
= 1/2 int x dx - 1/4 int sin(2x) dx .

Apply the Power rule for integration:
int x^n dx = x^(n+1)/(n+1) +c
1/2 int x dx = 1/2*x^(1+1)/(1+1)
= 1/2* x^2/2
= x^2/4
Apply the basic integration formula for sine function: int sin(u) du = -cos(u) +C .
Let: u =2x then du = 2 dx or (du)/2 = dx .
1/4 int sin(2x) dx = 1/4 int sin(u) * (du)/2
= 1/4 *1/2 int sin(u) du
= 1/8 (-cos(u))
= -cos(u)/8
Plug-in u = 2x on -cos(u)/8 , we get: 1/4 int sin(2x) dx =-cos(2x)/8 .
Combining the results, we get:
int (x/2 - sin(2x)/4 ) dx =x^2/4 - (-cos(2x)/8) +C
=x^2/4+ cos(2x)/8 +C
Then, the complete indefinite integral will be:
int x sin^2(x) dx=x^2/2 - (xsin(2x))/4 - int (x/2 - sin(2x)/4 ) dx
=x^2/2 - (xsin(2x))/4 -(x^2/4+ cos(2x)/8) +C
=x^2/2 - (xsin(2x))/4 - x^2/4 - cos(2x)/8 +C
= (x^2)/4- (xsin(2x))/4- cos(2x)/8 +C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...