Monday, April 15, 2013

Single Variable Calculus, Chapter 3, 3.6, Section 3.6, Problem 44

Use implicit differentiation to show that $\displaystyle y' = \frac{p}{q} x ^{(p/q) - 1}$ suppose that if $y = x^{p/q}$, then $y^q = x^p$.

Using Power Rule and implicit differentiation.


$
\begin{equation}
\begin{aligned}

y^q =& x^p
\\
\\
qy^{q - 1} \frac{dy}{dx} =& px^{p - 1}
\\
\\
\frac{dy}{dx} =& \frac{px^{p - 1}}{qy^{q - 1}}
\\
\\
\text{but } y =& x^{p/q}, \text{ so }
\\
\\
\frac{dy}{dx} =& \frac{px ^{p - 1}}{q [ (x^{p/q})^{q - 1}]}
\qquad \qquad \text{ Using the Property of Exponent }
\\
\\
\frac{dy}{dx} =& \frac{p}{q} \frac{\displaystyle \left[ \frac{x^p}{x} \right]}{\displaystyle \left[ \frac{\displaystyle \left( \frac{x^{p/q}}{x} \right)^q}{(x^{p/q})} \right]}
\\
\\
\frac{dy}{dx} =& \frac{p}{q} \frac{\cancel{x^p} (x^{p/q})}{x \cancel{(x^p)}}
\\
\\
\frac{dy}{dx} =& \frac{p}{q} \frac{x^{p/q}}{x}
\\
\\
\frac{dy}{dx} =& \frac{p}{q} x^{p/q - 1}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...