Monday, April 22, 2013

College Algebra, Chapter 5, 5.3, Section 5.3, Problem 50

Combine the expression $\displaystyle \ln (a + b) + \ln (a - b) - 2 \ln c$, using the Laws of Logarithm


$
\begin{equation}
\begin{aligned}

\ln (a + b) + \ln (a - b) - 2 \ln c =& \ln (a + b) + \ln (a - b) - \ln c^2
&& \text{Law of Logarithm } \log_a (A^C) = C \log_a A
\\
\\
\ln (a + b) + \ln (a - b) - 2 \ln c =& \ln (a + b)(a - b) - \ln c^2
&& \text{Law of Logarithm } \log_a (AB) = \log_a A + \log_a B
\\
\\
\ln (a + b) + \ln (a - b) - 2 \ln c =& \ln \left[ \frac{(a + b)(a - b)}{c^2} \right]
&& \text{Law of Logarithm } \log_a \left( \frac{A}{B} \right) = \log_a A - \log_a B
\\
\\
\ln (a + b) + \ln (a - b) - 2 \ln c =& \ln \left( \frac{a^2 - b^2}{c^2} \right)
&& \text{Special Product } (A - B)(A + B) = (A^2 - B^2)

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...