Wednesday, February 27, 2013

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 36

Determine the integral $\displaystyle \int \frac{\sin \Phi}{\cos^3 \Phi} d \Phi$


$
\begin{equation}
\begin{aligned}

\int \frac{\sin \Phi}{\cos^3 \Phi} d \Phi =& \int \frac{1}{\cos^3 \Phi} \sin \Phi d \Phi

\end{aligned}
\end{equation}
$


Let $u = \cos \Phi$, then $du = - \sin \Phi d \Phi$, so $\sin \Phi d \Phi = -du$. Thus


$
\begin{equation}
\begin{aligned}

\int \frac{1}{\cos^3 \Phi} \sin \Phi d \Phi =& \int \frac{1}{u^3} \cdot -du
\\
\\
\int \frac{1}{\cos^3 \Phi} \sin \Phi d \Phi =& - \int \frac{1}{u^3} du
\\
\\
\int \frac{1}{\cos^3 \Phi} \sin \Phi d \Phi =& - \int u^{-3} du
\\
\\
\int \frac{1}{\cos^3 \Phi} \sin \Phi d \Phi =& \frac{-u^{-3 + 1}}{-3 + 1} + c
\\
\\
\int \frac{1}{\cos^3 \Phi} \sin \Phi d \Phi =& \frac{-u^{-2}}{-2} + c
\\
\\
\int \frac{1}{\cos^3 \Phi} \sin \Phi d \Phi =& \frac{u^{-2}}{2} + c
\\
\\
\int \frac{1}{\cos^3 \Phi} \sin \Phi d \Phi =& \frac{1}{2u^2} + c
\\
\\
\int \frac{1}{\cos^3 \Phi} \sin \Phi d \Phi =& \frac{1}{2 (\cos \Phi)^2} + c
\\
\\
\int \frac{1}{\cos^3 \Phi} \sin \Phi d \Phi =& \frac{1}{2 \cos^2 \Phi} + c
\\
\\
\int \frac{1}{\cos^3 \Phi} \sin \Phi d \Phi =& \frac{1}{2} \sec^2 \Phi + c


\end{aligned}
\end{equation}
$


then


$
\begin{equation}
\begin{aligned}

\int \sec^3 x dx =& \int udv
\\
\\
\int \sec^3 x dx =& uv - \int v du
\\
\\
\int \sec^3 x dx =& \sec x \tan x - \int \tan x \cdot \sec x \tan x dx
\\
\\
\int \sec^3 x dx =& \sec x \tan x - \int \sec x \tan^2 x dx
\qquad \text{Apply Trigonometric Identity } \sec^2 x = \tan^2 x + 1
\\
\\
\int \sec^3 x dx =& \sec x \tan x - \int \sec x (\sec^2 x - 1) dx
\\
\\
\int \sec^3 x dx =& \sec x \tan x - \int (\sec^3 x - \sec x) dx
\\
\\
\int \sec^3 x dx =& \sec x \tan x - \int \sec^2 x dx + \int \sec x dx
\qquad \text{Combine like terms}


\end{aligned}
\end{equation}
$




$
\begin{equation}
\begin{aligned}

\int \sec^3 x dx + \int \sec^2 x dx =& \sec x \tan x + \int \sec x dx
\\
\\
2 \int \sec^3 x dx =& \sec x \tan x + \int \sec x dx
\\
\\
2 \int \sec^3 x dx =& \sec x \tan x + \ln (\sec x + \tan x) + c
\\
\\
\int \sec^3 x dx =& \frac{\sec x \tan x + \ln (\sec x + \tan x)}{2} + c


\end{aligned}
\end{equation}
$


@ 2nd term

$\int \sec x dx = \ln (\sec x + \tan x) + c$

Combine the results of the integration term by term


$
\begin{equation}
\begin{aligned}

\int \tan^2 x \sec x dx =& \frac{\sec x \tan x + \ln(\sec x + \tan x)}{2} - \ln (\sec x + \tan x) + c
\\
\\
\int \tan^2 x \sec x dx =& \frac{\sec x \tan x + \ln(\sec x + \tan x) - 2 \ln (\sec x + \tan x)}{2} + c
\\
\\
\int \tan^2 x \sec x dx =& \frac{\sec x \tan x - \ln (\sec x + \tan x)}{2} + c
\\
\\
\text{ or} &
\\
\\
\int \tan^2 x \sec x dx =& \frac{1}{2} (\sec x \tan x - \ln (\sec x + \tan x)) + c


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...