Wednesday, February 27, 2013

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 36

Determine the integral sinΦcos3ΦdΦ


sinΦcos3ΦdΦ=1cos3ΦsinΦdΦ


Let u=cosΦ, then du=sinΦdΦ, so sinΦdΦ=du. Thus


1cos3ΦsinΦdΦ=1u3du1cos3ΦsinΦdΦ=1u3du1cos3ΦsinΦdΦ=u3du1cos3ΦsinΦdΦ=u3+13+1+c1cos3ΦsinΦdΦ=u22+c1cos3ΦsinΦdΦ=u22+c1cos3ΦsinΦdΦ=12u2+c1cos3ΦsinΦdΦ=12(cosΦ)2+c1cos3ΦsinΦdΦ=12cos2Φ+c1cos3ΦsinΦdΦ=12sec2Φ+c


then


sec3xdx=udvsec3xdx=uvvdusec3xdx=secxtanxtanxsecxtanxdxsec3xdx=secxtanxsecxtan2xdxApply Trigonometric Identity sec2x=tan2x+1sec3xdx=secxtanxsecx(sec2x1)dxsec3xdx=secxtanx(sec3xsecx)dxsec3xdx=secxtanxsec2xdx+secxdxCombine like terms




sec3xdx+sec2xdx=secxtanx+secxdx2sec3xdx=secxtanx+secxdx2sec3xdx=secxtanx+ln(secx+tanx)+csec3xdx=secxtanx+ln(secx+tanx)2+c


@ 2nd term

secxdx=ln(secx+tanx)+c

Combine the results of the integration term by term


tan2xsecxdx=secxtanx+ln(secx+tanx)2ln(secx+tanx)+ctan2xsecxdx=secxtanx+ln(secx+tanx)2ln(secx+tanx)2+ctan2xsecxdx=secxtanxln(secx+tanx)2+c ortan2xsecxdx=12(secxtanxln(secx+tanx))+c

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...