Sunday, February 10, 2013

College Algebra, Chapter 1, 1.5, Section 1.5, Problem 60

Find all real solutions of the equation $\displaystyle \sqrt{1 + \sqrt{x + \sqrt{2x +1}}} = \sqrt{5 + \sqrt{x}}$


$
\begin{equation}
\begin{aligned}

\sqrt{1 + \sqrt{x + \sqrt{2x +1}}} =& \sqrt{5 + \sqrt{x}}
&& \text{Given}
\\
\\
1 + \sqrt{x + \sqrt{2x + 1}} =& 5 + \sqrt{x}
&& \text{Square both sides}
\\
\\
\sqrt{x + \sqrt{2x + 1}} =& 4 + \sqrt{x}
&& \text{Subtract } 1
\\
\\
x + \sqrt{2x + 1} =& 16 + 8 \sqrt{x} + x
&& \text{Square both sides}
\\
\\
\sqrt{2x + 1} =& 16 + 8 \sqrt{x}
&& \text{Cancel out } x
\\
\\
2x + 1 =& 256 + 256 \sqrt{x} + 64x
&& \text{Square both sides}
\\
\\
256 \sqrt{x} + 62x + 255 =& 0
&& \text{Combine like terms}
\\
\\
256 \sqrt{x} + 62 (\sqrt{x})^2 + 255 =& 0
&& \text{If we let } w = \sqrt{x}
\\
\\
256w + 62w^2 + 255 =& 0
&& \text{Subtract } 255
\\
\\
62w^2 + 256 w =& -255
&& \text{Divide both sides by } 62
\\
\\
w^2 + \frac{256}{62} w + \frac{16384}{3844} =& \frac{-255}{62} + \frac{16384}{3844}
&& \text{Complete the square: add } \left( \frac{\displaystyle \frac{256}{62}}{2} \right)^2 = \frac{16384}{3844}
\\
\\
\left( w + \frac{128}{62} \right)^2 =& \frac{287}{1922}
&& \text{Perfect Square}
\\
\\
w + \frac{128}{62} =& \pm \sqrt{\frac{287}{1922}}
&& \text{Take the square root}
\\
\\
w =& \frac{-128}{62} \pm \frac{\sqrt{287}}{31 \sqrt{2}}
&& \text{Subtract } \frac{128}{62} \text{ and simplify}
\\
\\
w =& \frac{-128 + \sqrt{574}}{62} \text{ and } w = \frac{-128 - \sqrt{574}}{62}
&& \text{Solve for } w
\\
\\
\sqrt{x} =& \frac{-128 + \sqrt{574}}{62} \text{ and } \sqrt{x} = \frac{-128 - \sqrt{574}}{62}
&& \text{Substitute } w = \sqrt{x}
\\
\\
x =& \left( \frac{-128 + \sqrt{574}}{62} \right)^2 \text{ and } x = \left( \frac{-128 - \sqrt{574}}{62} \right)^2
&& \text{Solve for } x


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...