Friday, November 2, 2012

Single Variable Calculus, Chapter 4, 4.4, Section 4.4, Problem 8

Find the limit limx12x35x+21+4x2+3x3 and justify each step by indicating the appropriate properties of limits.


limx12x35x+21+4x2+3x31x31x3=limx1x3(12x35x+2)1x3(1+4x2+3x3)=limx12\cancelx3\cancelx35xx3+2x31x3+4x2x3+3\cancelx3\cancelx3=limx125x2+2x31x3+4x+3Applylimxa[nf(x)]=nlimxaf(x)=limx125x2+2x31x3+4x+3Apply limxa[f(x)g(x)]=limxaf(x)limxag(x)=limx(125x2+2x3)limx(1x3+4x+3)Apply limxa[f(x)±g(x)]=limxaf(x)±limxag(x)=12limx5x2+limxzx3limx1x3+limx4x+3Apply limx1xn=0=120+00+0+3=123=4=2

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...