Friday, November 2, 2012

Single Variable Calculus, Chapter 4, 4.4, Section 4.4, Problem 8

Find the limit $\displaystyle \lim_{x \to \infty} \sqrt{\frac{12x^3 - 5x + 2}{1 + 4x^2 + 3x^3}}$ and justify each step by indicating the appropriate properties of limits.


$
\begin{equation}
\begin{aligned}

\lim_{x \to \infty} \sqrt{\frac{12x^3 - 5x + 2}{1 + 4x^2 + 3x^3}} \cdot \frac{\displaystyle \frac{1}{\sqrt{x^3}}}{\frac{1}{\sqrt{x^3}}}
=& \lim_{x \to \infty} \sqrt{\frac{\displaystyle \frac{1}{x^3} (12x^3 - 5x + 2)}{\displaystyle \frac{1}{x^3} (1 + 4x^2 + 3x^3)}}
&&
\\
\\
=& \lim_{x \to \infty} \sqrt{\frac{\displaystyle \frac{12 \cancel{x^3}}{\cancel{x^3}} - \frac{5x}{x^3} + \frac{2}{x^3}}{\displaystyle \frac{1}{x^3} + \frac{4x^2}{x^3} + \frac{3 \cancel{x^3}}{\cancel{x^3}}}}
&&
\\
\\
=& \lim_{x \to \infty} \sqrt{\frac{\displaystyle 12 - \frac{5}{x^2} + \frac{2}{x^3}}{\displaystyle \frac{1}{x^3} + \frac{4}{x} + 3}}
&& \text{Apply} \displaystyle \lim_{x \to a} [\sqrt[n]{f(x)}] = \sqrt[n]{\lim_{x \to a} f(x)}
\\
\\
=& \sqrt{\lim_{x \to \infty} \frac{\displaystyle 12 - \frac{5}{x^2} + \frac{2}{x^3} }{\displaystyle \frac{1}{x^3} + \frac{4}{x} + 3 }}
&& \text{Apply $\large \lim \limits_{x \to a} \left[ \frac{f(x)}{g(x)} \right] = \frac{\lim \limits_{x \to a} f(x)}{\lim_{x \to a} g(x)}$}
\\
\\
=& \sqrt{ \frac{\displaystyle \lim_{x \to \infty} \left( 12 - \frac{5}{x^2} + \frac{2}{x^3} \right) }{\displaystyle \lim_{x \to \infty} \left( \frac{1}{x^3} + \frac{4}{x} + 3 \right)} }
&& \text{Apply $\lim \limits_{x \to a} [f(x) \pm g(x)] = \displaystyle \lim \limits_{x \to a} f(x) \pm \lim \limits_{x \to a} g(x)$}
\\
\\
=& \sqrt{\frac{\displaystyle 12 - \lim_{x \to \infty} \frac{5}{x^2} + \lim_{x \to \infty} \frac{z}{x^3} }{\displaystyle \lim_{x \to \infty} \frac{1}{x^3} + \lim_{x \to \infty} \frac{4}{x} + 3}}
&& \text{Apply $\large \lim \limits_{x \to \infty} \displaystyle \frac{1}{x^n} = 0$}
\\
\\
=& \sqrt{\frac{12 - 0 + 0}{0 + 0 + 3}}
&&
\\
\\
=& \sqrt{\frac{12}{3}} = \sqrt{4} = 2
&&

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...