Sunday, November 11, 2012

Single Variable Calculus, Chapter 3, 3.6, Section 3.6, Problem 35

Determine $y''$ of $x^3 + y^3 = 1$ by using implicit differentiation.

Solving for 1st Derivative


$
\begin{equation}
\begin{aligned}

\frac{d}{dx} (x^3) + \frac{d}{dx} (y^3) =& \frac{d}{dx} (1)
\\
\\
3x^2 + 3y^2 \frac{dy}{dx} =& 0
\\
\\
3y^2 \frac{dy}{dx} =& -3x^2
\\
\\
\frac{\displaystyle \cancel{3y^2} \frac{dy}{dx}}{\cancel{3y^2}} =& \frac{-\cancel{3}x^2}{\cancel{3}y^2}
\\
\\
\frac{dy}{dx} =& \frac{-x^2}{y^2}

\end{aligned}
\end{equation}
$


Solving for the 2nd Derivative


$
\begin{equation}
\begin{aligned}

\frac{d^2y}{dx^2} =& \frac{\displaystyle y^2 \frac{d}{dx} (-x^2) - (-x^2) \frac{d}{dx} (y^2)}{(y^2)^2}
\\
\\
\frac{d^2y}{dx^2} =& \frac{\displaystyle (y^2)(-2x) - (-x^2)(2y) \frac{dy}{dx}}{y^4}
\\
\\
\frac{d^2y}{dx^2} =& \frac{\displaystyle -2xy^2 + 2x^2y \frac{dy}{dx}}{y^4}
\qquad \qquad \text{We know that $\large \frac{dy}{dx} = \frac{-x^2}{y^2}$}
\\
\\
\frac{d^2y}{dx^2} =& \frac{\displaystyle -2xy^2 + (2x^2y) \left( \frac{-x^2}{y^2} \right)}{y^4}
\\
\\
\frac{d^2y}{dx^2} =& \frac{\displaystyle -2xy^2 + \left( \frac{-2x^4}{y} \right)}{y^4}
\\
\\
\frac{d^2y}{dx^2} =& \frac{\displaystyle \frac{-2xy^3 - 2x^4}{y}}{y^4}
\\
\\
\frac{d^2y}{dx^2} =&\frac{-2x(y^3 + x^3)}{(y)(y^4)}
\qquad \qquad \text{We know that $x^3 + y^3 = 1$}
\\
\\
\frac{d^2y}{dx^2} =& \frac{-2x(1)}{y^5}
\\
\\
\frac{d^2y}{dx^2} =& \frac{-2x}{y^5}


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...