Sunday, November 11, 2012

Single Variable Calculus, Chapter 3, 3.6, Section 3.6, Problem 35

Determine y of x3+y3=1 by using implicit differentiation.

Solving for 1st Derivative


ddx(x3)+ddx(y3)=ddx(1)3x2+3y2dydx=03y2dydx=3x2\cancel3y2dydx\cancel3y2=\cancel3x2\cancel3y2dydx=x2y2


Solving for the 2nd Derivative


d2ydx2=y2ddx(x2)(x2)ddx(y2)(y2)2d2ydx2=(y2)(2x)(x2)(2y)dydxy4d2ydx2=2xy2+2x2ydydxy4We know that dydx=x2y2d2ydx2=2xy2+(2x2y)(x2y2)y4d2ydx2=2xy2+(2x4y)y4d2ydx2=2xy32x4yy4d2ydx2=2x(y3+x3)(y)(y4)We know that x3+y3=1d2ydx2=2x(1)y5d2ydx2=2xy5

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...