Friday, November 16, 2012

College Algebra, Chapter 1, 1.3, Section 1.3, Problem 62

Solve $A = 2 \pi r^2 + 2 \pi rh$ for $r$.


$
\begin{equation}
\begin{aligned}

A =& 2 \pi r^2 + 2 \pi rh
&& \text{Given}
\\
\\
A =& 2 \pi (r^2 + rh)
&& \text{Factor out } 2 \pi
\\
\\
\frac{A}{2 \pi} =& r^2 + rh
&& \text{Divide both sides by } 2 \pi
\\
\\
\frac{A}{2 \pi} + \frac{h^2}{4} =& r^2 + rh + \frac{h^2}{4}
&& \text{Complete the square: add } \left( \frac{h}{2} \right)^2 = \frac{h^2}{4}
\\
\\
\frac{A}{2 \pi} + \frac{h^2}{4} =& \left( r + \frac{h}{2} \right)^2
&& \text{Perfect square}
\\
\\
\pm \sqrt{\frac{2A + h^2}{4 \pi}} =& r + \frac{h}{2}
&& \text{Take the square root and simplify by using LCD}
\\
\\
r =& \frac{-h}{2} \pm \sqrt{\frac{2A + h^2}{4 \pi}}
&& \text{Subtract } \frac{h}{2}
\\
\\
r =& \frac{-h}{2} \pm \frac{1}{2} \left( \sqrt{\frac{2A + h^2}{\pi}} \right)
&& \text{Solve for } r



\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...