Wednesday, November 7, 2012

int_-2^2 dx/(x^2+4x+13) Find or evaluate the integral by completing the square

 To evaluate the given integral: int_(-2)^(2)(dx)/(x^2+4x+13) ,
 we follow the first fundamental theorem of calculus: 
If f is continuous on closed interval [a,b], we follow:
int_a^bf(x)dx = F(b) - F(a)
 where F is the anti-derivative or indefinite integral of f on closed interval [a,b] .
  To determine the F(x) , we apply completing the square on the trinomial: x^2+4x+13.
Completing the square:
x^2+4x+13 is in a form of   ax^2 +bx+c
 where:
a =1
b =4
 c= 13
 To complete square ,we add and subtract (-b/(2a))^2 on both sides:
With a=1 and b = 4 then:
(-b/(2a))^2 =(-4/(2*1))^2 = 4
Thenx^2+4x+13 becomes:
x^2+4x+ 13 +4-4
(x^2+4x+4) + 13 -4
Applying x^2 +4x +13 =(x+2)^2 + 9 in the given integral, we get:
int_(-2)^(2) (dx)/(x^2+4x+13) =int_(-2)^(2) (dx)/((x+2)^2 + 9)
 The integral form: int_(-2)^(2) (dx)/((x+2)^2 + 9) resembles the 
basic integration formula for inverse tangent function:
int_a^b (du)/(u^2+c^2) = (1/c)arctan(u/c) |_a^b
Using u-substitution, we let u = x+2 then du = 1dx  or   du=dx.
where the boundary  limits:  upper bound = 2 and lower bound =-2
and  c^2 = 9 then c = 3
The indefinite integral will be:
int_(-2)^(2) (dx)/((x+2)^2 + 9) =int_(-2)^(2) (du)/(u^2 + 9)
            =(1/3)arctan(u/3) |_(-2)^(2)
Plug-in u=x+2 to solve for F(x) :
(1/3)arctan(u/3) |_(-2)^(2)=(1/3)arctan((x+2)/3) |_(-2)^(2).
 
We now have  F(x)|_a^b=(1/3)arctan(u/3) |_(-2)^(2).
 
Applying F(x)|_a^b= F(b)-F(a) , we get:
(1/3)arctan(x+2/3) |_(-2)^(2)
  =(1/3)arctan((2+2)/3) -(1/3)arctan((-2+2)/3)
=(1/3)arctan(4/3) -(1/3)arctan(0/3)
=(1/3)arctan(4/3) -0
  =(1/3)arctan(4/3)
 
 
 
 
 

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...