Tuesday, October 16, 2012

Single Variable Calculus, Chapter 8, 8.1, Section 8.1, Problem 50

Prove secnxdx=tanxsecn2xn1+n2n1secn2xdx(n1)
Notice that secnxdx=secn2xsec2xdx

So if we let n=secn2x(secxtanx)dx and dv=sec2xdx, then

du=(n2)secn2x(secxtanx)dx and v=sec2xdx=tanx

Thus,

secn2xsec2xdx=uvvdu=tanx(secn2x)(tanx)[(n2)secn3x(secxtanx)]=tan(secn2x)(n2)secn2xtan2x


Recall for the identity tanx=secx1
So,
[(n2)+1]secn2xsec2xdx=tanx(secn2x)+(n2)secn2xdx
(n1)secn2xsec2xdx=tanx(secn2x)+(n2)secn2xdx

Dividing with sides by (n1), we get
secn2xsec2xdx=tanx(secn2x)n1+n2n1secn2xdx

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...