Tuesday, October 16, 2012

Single Variable Calculus, Chapter 8, 8.1, Section 8.1, Problem 50

Prove $\displaystyle \int \sec^n x dx = \frac{\tan x \sec^{n-2} x}{n - 1} + \frac{n-2}{n-1} \int \sec^{n-2} x dx ( n \neq 1)$
Notice that $\displaystyle \int \sec^n x dx = \int \sec^{n - 2} x \cdot \sec^2 x dx$

So if we let $n = \sec^{n-2} x (\sec x \tan x) dx$ and $dv = \sec^2 x dx$, then

$du = (n-2) \sec^{n-2} x ( \sec x \tan x ) dx$ and $v = \int \sec^2 x dx = \tan x$

Thus,

$
\begin{equation}
\begin{aligned}
\int \sec^{n-2} x \cdot \sec^2 x dx = uv - \int v du &= \tan x \left( \sec^{n-2} x \right) - \int (\tan x) \left[ (n-2) \sec^{n-3} x (\sec x \tan x) \right]\\
\\
&= \tan \left( \sec^{n-2} x \right) - (n-2) \int \sec^{n-2} x \tan^2 x
\end{aligned}
\end{equation}
$


Recall for the identity $\tan^x = \sec^ x - 1$
So,
$\displaystyle [(n-2)+1] \int \sec^{n-2} x \cdot \sec^2 x dx = \tan x \left( \sec^{n-2} x \right) + (n-2) \int \sec^{n-2} x dx$
$\displaystyle (n-1) \int \sec^{n-2} x \cdot \sec^2 x dx = \tan x \left( \sec^{n-2} x\right) + (n-2) \int \sec^{n-2} x dx$

Dividing with sides by $(n-1)$, we get
$\displaystyle \int \sec^{n-2} x \cdot \sec^2 x dx = \frac{\tan x \left(\sec^{n-2}x\right)}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x dx$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...