Wednesday, October 31, 2012

int x/sqrt(x^4-6x^2+5) dx Use integration tables to find the indefinite integral.

Recall that indefinite integral follows int f(x) dx = F(x) +C where:
f(x) as the integrand function
F(x) as the antiderivative of f(x)
C as the constant of integration
The given integral problem: int x/(x^4-6x^2+5) dx resembles one of the formulas from the integration table. We follow the integral formula for rational function with roots as:
int (dx)/sqrt(ax^2+bx+c) = 1/sqrt(a)ln|2ax+b+2sqrt(a(ax^2+bx+c))| +C .
For easier comparison, we apply u-substitution by letting: u=x^2
then du= 2x dx or (du)/2 =xdx .
Plug-in the values, we get:
int x/(x^4-6x^2+5) dx =int 1/(x^4-6x^2+5)*x dx
                                 =int 1/(u^2-6u+5)*(du)/2
Apply the basic integration property: int c*f(x) dx = c int f(x) dx .
int 1/(u^2-6u+5)*(du)/2 = 1/2int 1/(u^2-6u+5) du
By comparing ax^2+bx+c  with u^2-6u+5 , we determine the corresponding values as: a=1 , b=-6 ,and c=5 .
Applying the aforementioned formula for rational function with roots, we get:
1/2int 1/(u^2-6u+5) du
=1/2 * [1/sqrt(1)ln|2(1)u+(-6)+2sqrt(1(1u^2+(-6)u+5))|] +C
=1/2 * [1/1ln|2u-6+2sqrt(u^2-6u+5)|] +C
=(ln|2u-6+2sqrt(u^2-6u+5)|)/2 +C
Plug-in u = x^2  and u^2=x^4   on   (ln|2u-6+2sqrt(u^2-6u+5)|)/2 +C , we get the indefinite integral as:
int x/(x^4-6x^2+5) dx =(ln|2x^2-6+2sqrt(x^4-6x^2+5)|)/2 +C
           

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...