Wednesday, October 3, 2012

int sin^3 (2theta) sqrt(cos(2theta)) d theta Find the indefinite integral

 
Given to solve,
int sin^3 (2 theta) sqrt(cos(2 theta)) d(theta)
let x= theta (just for convinence)
so,
int sin^3 (2 theta) sqrt(cos(2 theta)) d(theta)
=int sin^3 (2x) sqrt(cos(2x)) dx
 
let 2x= u so , du = 2dx then ,
int sin^3 (2x) sqrt(cos(2x)) dx
=int sin^3 (u) sqrt(cos(u)) (du)/2
=(1/2)int sin^2 (u) sin u sqrt(cos(u)) du
= (1/2)int (1-cos^2 (u)) sin u sqrt(cos(u)) du
 
let cos u =t, so , dt = -sin(u) du
then,
(1/2)int (1-cos^2 (u)) sin u sqrt(cos(u)) du
= (1/2)int (1-t^2) sqrt(t) sin u du
=(1/2)int (1-t^2) sqrt(t) (-dt)
= (-1/2)int (1-t^2) sqrt(t) (dt)
= (-1/2) int (t^(1/2) - t^(5/2))dt
= (-1/2) [(t^(3/2))/(3/2) - t^((5/2)+1)/((5/2)+1)]
= (-1/2) [(t^(3/2))/(3/2) - (t^(7/2))/(7/2)]
but t= cos u = cos(2x) so,
= (-1/2) [((cos(2x))^(3/2))/(3/2) - ((cos(2x))^(7/2))/(7/2)]
= (1/2)[((cos(2x))^(7/2))/(7/2) -((cos(2x))^(3/2))/(3/2)]
but x= theta, so
= (1/2)[((cos(2(theta)))^(7/2))/(7/2) -((cos(2(theta)))^(3/2))/(3/2)]
so,
int sin^3 (2 theta) sqrt(cos(2 theta)) d(theta)
=(1/2)[((cos(2(theta)))^(7/2))/(7/2) -((cos(2(theta)))^(3/2))/(3/2)]
 

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...