Friday, October 19, 2012

Single Variable Calculus, Chapter 6, 6.5, Section 6.5, Problem 4

Determine the average value of the function $f(x) = x^2 \sqrt{1 + x^3}$ on the interval $[0,2]$.


$
\begin{equation}
\begin{aligned}

f_{ave} =& \frac{1}{b - a} \int^b_a f(x) dx
\\
\\
f_{ave} =& \frac{1}{2 - 0} \int^2_0 x^2 \sqrt{1 + x^3} dx
\\
\\
\text{Let } u =& 1 + x^3
\\
\\
du =& 3x^2 dx

\end{aligned}
\end{equation}
$


Make sure that your upper and lower limits are also in terms of $u$.


$
\begin{equation}
\begin{aligned}

f_{ave} =& \frac{1}{2} \left( \frac{1}{3} \right) \int^{1 + (2)^3}_{1 + (0)^3} u^{\frac{1}{2}} du
\\
\\
f_{ave} =& \frac{1}{6} \int^9_1 u^{\frac{1}{2}} du
\\
\\
f_{ave} =& \frac{1}{6} \left[ \frac{u^{\frac{3}{2}}}{\displaystyle \frac{3}{2}} \right]^9_1
\\
\\
f_{ave} =& \frac{2}{18} \left[ 9^{\frac{3}{2}} - 1^{\frac{3}{2}} \right]
\\
\\
f_{ave} =& \frac{26}{9}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...