Monday, October 22, 2012

College Algebra, Chapter 3, 3.7, Section 3.7, Problem 24

If $g(x) = x^2 + 4x$ with $x \geq -2$, find $g^{-1} (5)$.

To find the inverse of $g(x)$, write $y = g(x)$


$
\begin{equation}
\begin{aligned}

y =& x^2 + 4x
&& \text{Model}
\\
\\
y + 4 =& x^2 + 4x + 4
&& \text{If we solve for $x$, we use completing the square: add } \left(\frac{4}{2} \right)^2 = 4
\\
\\
y + 4 =& (x + 2)^2
&& \text{Perfect Square}
\\
\\
\pm \sqrt{y + 4} =& x + 2
&& \text{Take the square root}
\\
\\
x =& -2 \pm \sqrt{y + 4}
&& \text{Subtract } 2
\\
\\
y =& -2 \pm \sqrt{x + 4}
&& \text{Interchange $x$ and $y$}
\\
\\
\text{Thus,} &
&&
\\
\\
g^{-1} (x) =& -2 \pm \sqrt{x + 4}
&&
\\
\\
\text{Thus, } g^{-1} (5) =& -2 + \sqrt{5 + 4} \qquad \text{ and }
&& g^{-1} (5) = -2 - \sqrt{5 + 4}
\\
\\
=& -2 + 3
&&= -2 - 3
\\
\\
=& 1
&&= -5



\end{aligned}
\end{equation}
$


Last, we have restrictions $x \geq -2$, so..

$g^{-1} (5) = 1$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...