Thursday, July 4, 2019

College Algebra, Chapter 1, 1.1, Section 1.1, Problem 10

Check whether a.) $x = 4$ or b.) $x = 8$ is a solution of the equation $\displaystyle \frac{x^{\frac{3}{2}}}{x-6} = x -8$

a.) $x = 4$

$
\begin{equation}
\begin{aligned}
\frac{(4)^{\frac{3}{2}}}{4-6} &= 4 - 8 && \text{Substitute } x = 4\\
\\
\frac{\left[ (4)^{\frac{1}{2}}\right]^3}{-2} &= -4 && \text{Simplify} \\
\\
- \frac{(2)^3}{2} &= -4 && \text{Simplify} \\
\\
- \frac{8}{2} &= -4 && \text{Simplify} \\
\\
-4 &= -4
\end{aligned}
\end{equation}
$

So $x = 4$ is the solution to the equation.

b.) $x = 8$

$
\begin{equation}
\begin{aligned}
\frac{(8)^{\frac{3}{2}}}{8-6} &= 8-8 && \text{Substitute } x =8\\
\\
\frac{(4 \cdot 2)^{\frac{3}{2}}}{2} &= 0 && \text{Get the factor}\\
\\
\frac{(4)^{\frac{3}{2}} (2)^{\frac{3}{2}} }{2} &= 0 && \text{Group}\\
\\
\frac{\left[(4)^{\frac{1}{2}}\right]^3\left[(2)^3\right]^{\frac{1}{2}}}{2} &= 0 && \text{Simplify}\\
\\
\frac{(2)^3 (8)^{\frac{1}{2}}}{2} &= 0 && \text{Simplify}\\
\\
\frac{(8) (4\cdot 2)^{\frac{1}{2}}}{2} &= 0 && \text{Simplify}\\
\\
\frac{(8)(\cancel{2})(2)^{\frac{1}{2}}}{\cancel{2}} &= 0 && \text{Cancel out like terms}\\
\\
8 (2)^{\frac{1}{2}} &\neq 0
\end{aligned}
\end{equation}
$

So $x = 8$ is not the solution to the equation.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...