Monday, July 29, 2019

College Algebra, Chapter 8, 8.4, Section 8.4, Problem 34

Complete the square to determine whether the equation represents an ellipse, a parabola, a hyperbola, or a degenerate conic. If the graph is an ellipse, find the center, foci, vertices and lengths of the major and minor axes. If it is a parabola, find the vertex, focus and directrix. If it is a hyperbola, find the center, foci, vertices and asymptotes. Sketch the graph of the equation. If the equation has no graph, explain why.


$
\begin{equation}
\begin{aligned}

x^2 + 4y^2 + 20x - 40y + 300 =& 0
&& \text{Subtract } 300
\\
\\
x^2 + 4y^2 + 20x - 40y =& -300
&& \text{Factor and group terms}
\\
\\
(x^2 + 20x + \quad) + 4 (y^2 - 10y + \quad) =& -300
&& \text{Complete the square: add } \left( \frac{20}{2} \right)^2 = 100 \text{ or both sides and } \left( \frac{-10}{2} \right)^2 = 25 \text{ on the left and $100$ on the right}
\\
\\
(x^2 + 20x + 100) + 4(y^2 - 10y + 25) =& -300 + 100 + 100
&& \text{Perfect square}
\\
\\
(x + 10)^2 + 4(y - 5)^2 =& -100
&& \text{Divide both sides by } -100
\\
\\
\frac{-(x + 10)^2}{100} - \frac{(y - 5)^2}{100} =& 1
&&

\end{aligned}
\end{equation}
$


We can see that the equation has no solution since the sum of the squares can never be a negative value. Thus, the equation is a degenerate conic and it has no graph.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...