Monday, July 29, 2019

Calculus of a Single Variable, Chapter 5, 5.8, Section 5.8, Problem 44

Indefinite integral are written in the form of int f(x) dx = F(x) +C
where: f(x) as the integrand
F(x) as the anti-derivative function
C as the arbitrary constant known as constant of integration
For the given problem: int sec^2(3x)dx , the integrand function: f(x)=sec^2(3x) is in a form of trigonometric function.
To solve for the indefinite integral, we may apply the basic integration formula for secant function:
int sec^2(u)du=tan(u)+C
We may apply u-substitution when by letting:
u= 3x then du =3 dx or (du)/3 = dx .
Plug-in the values of u =3x and dx= (du)/3 , we get:
int sec^2(3x)dx =int sec^2(u)*(du)/3
=int (sec^2(u))/3du
Apply basic integration property: int c*f(x)dx= c int f(x)dx .
int (sec^2(u))/3du =(1/3)int sec^2(u)du
Then following the integral formula for secant, we get:
(1/3)int sec^2(u)du= 1/3tan(u)+C
Plug-in u =3x to solve for the indefinite integral F(x):
int sec^2(3x)dx=1/3tan(3x)+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...