Wednesday, July 10, 2019

Calculus of a Single Variable, Chapter 8, 8.3, Section 8.3, Problem 26

inttan^5(2x)sec^4(2x)dx
Let's apply integral substitution:u=2x
(du)=2dx
inttan^5(2x)sec^4(2x)dx=inttan^5(u)sec^4(u)(du)/2
Take the constant out and rewrite the integral as,
=1/2intsec^2(u)sec^2(u)tan^5(u)du
Now use the trigonometric identity :sec^2(x)=1+tan^2(x)
=1/2int(1+tan^2(u))sec^2(u)tan^5(u)du
Again apply the integral substitution:v=tan(u)
dv=sec^2(u)du
=1/2int(1+v^2)v^5dv
=1/2int(v^5+v^7)dv
apply the sum rule and power rule,
=1/2(intv^5dv+intv^7dv)
=1/2{(v^(5+1)/(5+1))+(v^(7+1)/(7+1))}
=1/2(v^6/6+v^8/8)
substitute back v=tan(u) and u=2x
=1/2((tan^6(2x))/6+(tan^8(2x))/8)
Add a constant C to the solution,
=1/2(1/6tan^6(2x)+1/8tan^8(2x))+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...