Saturday, February 3, 2018

int sin^4(6theta) d theta Find the indefinite integral

Indefinite integrals are written in the form of int f(x) dx = F(x) +C
 where: f(x) as the integrand
          F(x) as the anti-derivative function 
           C  as the arbitrary constant known as constant of integration
To evaluate the given problem int sin^4(6theta) d theta , we may apply u-substitution by letting: u = 6theta then du = 6 d theta or (du)/6 = d theta .
The integral becomes:
int sin^4(6theta) d theta=int sin^4(u) * (du)/6
 Apply the basic properties of integration: int c*f(x) dx= c int f(x) dx .
int sin^4(u) * (du)/6=1/6int sin^4(u)du .
Apply the integration formula for sine function: int sin^n(x) dx = -(cos(x)sin^(n-1)(x))/n+(n-1)/n int sin^(n-2)(x)dx .
1/6int sin^4(u)du=1/6[-(cos(u)sin^(4-1)(u))/4+(4-1)/4 int sin^(4-2)(u)du] .
                    =1/6[-(cos(u)sin^(3)(u))/4+3/4 int sin^(2)(u)du]
For the integral int sin^(2)(u)du , we may apply trigonometric identity: sin^2(x)= 1-cos(2x)/2 or 1/2 - cos(2x)/2.
We get:
int sin^(2)(u)du = int ( 1/2 - cos(2u)/2) du .
Apply the basic integration property:int (u-v) dx = int (u) dx - int (v) dx .
int ( 1/2 - cos(2u)/2) du=int ( 1/2) du - int cos(2u)/2 du
                                   = 1/2u - 1/4sin(2u)+C
                                  or u/2 - sin(2u)/4+C
Note: From the table of integrals, we have int cos(theta) d theta = sin(theta)+C.
Let: v = 2u then dv = 2du or (dv)/2= du
thenint cos(2x)/2 du =int cos(v)/2 * (dv)/2
                             = 1/4 sin(v)
                             = 1/4 sin(2u)
Applying int sin^(2)(u)du=u/2 - sin(2u)/4+C , we get:
1/6int sin^4(u)du=1/6[-(cos(u)sin^(3)(u))/4+3/4 int sin^(2)(u)du]
                           =1/6[-(cos(u)sin^(3)(u))/4+3/4 [u/2 - sin(2u)/4]]+C
                           =1/6[-(cos(u)sin^(3)(u))/4+(3u)/8 - (3sin(2u))/16]+C
                           =(-cos(u)sin^(3)(u))/24+(3u)/48 - (3sin(2u))/96+C
Plug-in u =6theta on (-cos(u)sin^(3)(u))/24+(3u)/48 - (3sin(2u))/96+C  to find the  indefinite integral as:
int sin^4(6theta) d theta =(cos(6theta)sin^(3)(6theta))/24+(3*6theta)/48 - (3sin(2*6theta))/96+C
                         =(cos(6theta)sin^(3)(6theta))/24+(18theta)/48 - (3sin(12theta))/96+C
                        =(cos(6theta)sin^(3)(6theta))/24+(3theta)/8 - (sin(12theta))/32+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...