Thursday, February 22, 2018

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 68

Let $P(x) = F(x) G(x)$ and $\displaystyle Q(x) = \frac{F(x)}{G(x)}$, where $F$ and $G$ are the functions whose are shown
a.) Find $P'(2) \qquad$ b.) Find $Q'(7)$




a.) $P'(2) = F'(2) [G(2)] + F(2) [G'(2)]$
Referring to the given graph

$
\begin{equation}
\begin{aligned}
F(2)&= 3, \quad F'(2) = 0, \quad G(2) = 2, \quad G'(2) = \frac{1}{2}\\
\\
P'(2)&= 0 (2) + 3\left( \frac{1}{2}\right)\\
\\
P'(2) &= \frac{3}{2}
\end{aligned}
\end{equation}
$


b.) $\displaystyle Q'(7) = \frac{G(7)[F'(7)]-[F(7)]G'(7)}{[G(7)]^2}$
Referring to the graph given,

$
\begin{equation}
\begin{aligned}
F(7) &= 5, \quad F'(7) = \frac{1}{4}, \quad G(7) = 1, \quad G'(7) = \frac{-2}{3}\\
\\
Q'(7) &= \frac{1 \left( \frac{1}{4} \right) - 5 \left( \frac{-2}{3}\right)}{(1)^2}\\
\\
Q'(7) &= \frac{43}{12}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...