Thursday, May 21, 2015

int (6x)/(x^3-8) dx Use partial fractions to find the indefinite integral

For the given integral problem: int (6x)/(x^3-8)dx , we may partial fraction decomposition to expand the integrand: f(x)=(6x)/(x^3-8) . 
The pattern on setting up partial fractions will depend on the factors  of the  denominator. For the given problem,  the denominator is in a form of difference of perfect cube :  x^3 -y^3 = (x-y)(x^2+xy+y^2)
Applying the special factoring on (x^3-8) , we get: 
(x^3-8) =(x^3-2^3)
              =(x-2)(x^2+x*2+2^2)
               =(x-2)(x^2+2x+4)
For the linear factor (x-2) , we will have partial fraction: A/(x-2) .
For the quadratic factor (x^2+2x+4) , we will have partial fraction: (Bx+C)/(x^2+2x+4) .
The integrand becomes:
(6x)/(x^3-8) =A/(x-2) +(Bx+C)/(x^2+2x+4)
Multiply both side by the LCD =(x-2)(x^2+2x+4) :
((6x)/(x^3-8))*(x-2)(x^2+2x+4) =[ A/(x-2) +(Bx+C)/(x^2+2x+4)] *(x-2)(x^2+2x+4)
6x =A(x^2+2x+4) +(Bx+C)(x-2)
We apply zero-factor property on (x-2)(x^2+2x+4) to solve for values we can assign on x.
x-2 = 0 then x=2
x^2+2x+4=0 then x = -1+-sqrt(3)i
To solve for A , we plug-in x=2 :
6*2 =A(2^2+2*2+4) +(B*2+C)(2-2)
12 =A(4+4+4) +(2B+C)(0)
12 = 12A +0
12/12 = (12A)/12
A =1
To solve for C , plug-in A=1  and x=0 so that B*x becomes 0 :
6*0 =A(0^2+2*0+4) +(B*0+C)(0-2)
0 =1(0+0+4) +(0+C)(-2)
0=4 -2C
2C =4
(2C)/2=4/2
C=2
To solve for B , plug-in A=1 , C=2 , and x=1 :
6*1 =1(1^2+2*1+4) +(B*1+2)(1-2)
6 = 1+2+4 +(B+2)*(-1)
6 = 1+2+4 -B-2
6 = 5-B
6-5 =-B
1=-B
then B =-1
Plug-in A = 1 , B =-1, and C=2 , we get the partial fraction decomposition:
int (6x)/(x^3-8) dx = int [ 1/(x-2) +(-x+2)/(x^2+2x+4)] dx
                      =int [ 1/(x-2) -x/(x^2+2x+4)+2/(x^2+2x+4)] dx
Apply the basic integration property: int (u+-v+-w) dx = int (u) dx +- int (v) dx+- int (w) dx .
int [ 1/(x-2) -x/(x^2+2x+4)+2/(x^2+2x+4)] dx =int 1/(x-2) dx- int x/(x^2+2x+4)dx+ int 2/(x^2+2x+4) dx
For the first integral, we apply integration formula for logarithm: int 1/u du = ln|u|+C .
Let u =x-2 then du = dx
int 1/(x-2) dx =int 1/u du
                 = ln|u|
                  = ln|x-2|
For the second integral, we apply indefinite integration formula for rational function:
int x/(ax^2+bx+c) dx =1/(2a)ln|ax^2+bx+c| -b/(asqrt(4ac-b^2))arctan((2ax+b)/sqrt(4ac-b^2))
By comparing "ax^2 +bx +c " with "x^2+2x+4 ", we determine the corresponding values: a=1 , b=2 , and c=4 .
int x/(x^2+2x+4)dx=1/(2*1)ln|1x^2+2x+4| -2/(1sqrt(4*1*4-2^2))arctan((2*1x+2)/sqrt(4*1*4-2^2))
=1/2ln|x^2+2x+4|-2/sqrt(16-4)arctan((2x+2)/sqrt(16-4))
=1/2ln|x^2+2x+4|-2/sqrt(12)arctan((2x+2)/sqrt(12))
=1/2ln|x^2+2x+4|-2/(2sqrt(3))arctan((2(x+1))/(2sqrt(3)))
=1/2ln|x^2+2x+4| -1/sqrt(3)arctan((x+1)/sqrt(3))
=(ln|x^2+2x+4|)/2 -(arctan((x+1)/sqrt(3)))/sqrt(3)
Apply indefinite integration formula for rational function with a=1 , b=2 , and c=4 :
int 1/(ax^2+bx+c) dx = 2/sqrt(4ac-b^2)arctan((2ax+b)/sqrt(4ac-b^2)) +C
Then,
int 2/(x^2+2x+4) dx =2int 1/(x^2+2x+4) dx
=2*[2/sqrt(4*1*4-2^2)arctan((2*1x+2)/sqrt(4*1*4-2^2))]
= 2*[2/sqrt(16-4)arctan((2x+2)/sqrt(16-4))]
= 2*[2/(2sqrt(12))arctan((2x+2)/sqrt(12)) ]
= 2*[2/(2sqrt(3))arctan((2(x+1))/(2sqrt(3)))]
= 2*[1/sqrt(3)arctan((x+1)/sqrt(3))]
=2/sqrt(3)arctan((x+1)/sqrt(3))
=(2arctan((x+1)/sqrt(3)))/sqrt(3)
Combining the results, we get the indefinite integral as: 
int (6x)/(x^3-8) dx =ln|x-2| - [(ln|x^2+2x+4|)/2 -arctan((x+1)/sqrt(3))/sqrt(3)]+(2arctan((x+1)/sqrt(3)))/sqrt(3) +C
=ln|x-2| -(ln|x^2+2x+4|)/2 +(arctan((x+1)/sqrt(3)))/sqrt(3)+(2arctan((x+1)/sqrt(3)) )/sqrt(3)+C
= (2ln|x-2|-ln|x^2+2x+4|)/2 +(arctan((x+1)/sqrt(3))+2arctan((x+1)/sqrt(3)))/sqrt(3) +C
= (ln|(x-2)^2/(x^2+2x+4)|)/2+(3arctan((x+1)/sqrt(3)))/sqrt(3) +C
= (ln|(x^2-4x+4)/(x^2+2x+4)|)/2 +sqrt(3)arctan((sqrt(3)(x+1))/3)+C
= (ln|(x^2-4x+4)/(x^2+2x+4)|)/2 +sqrt(3)arctan((xsqrt(3)+sqrt(3))/3)+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...