Sunday, May 24, 2015

College Algebra, Chapter 1, 1.4, Section 1.4, Problem 74

Suppose that $z = a + bi$ and $w = c + di$, then the symbol $\overline{z}$ represents the complex conjugate of $z$. Prove $\overline{zw} = \overline{z} \cdot \overline{w}$


$
\begin{equation}
\begin{aligned}

\overline{zw} =& \overline{(a + bi)(c + di)}
&& \text{Model}
\\
\\
=& \overline{(ac + adi + cbi + bdi^2)}
&& \text{Use FOIL method}
\\
\\
=& \overline{(ac + adi + cbi + bd(-1))}
&& \text{Recall that } i^2 = -1
\\
\\
=& \overline{(ac - bd) + (ad + cb)i}
&& \text{Apply complex conjugate}
\\
\\
=& (ac - bd) - (ad + cb)i
&&
\\
\\
\overline{z} \cdot \overline{w} =& \overline{a + bi} \cdot \overline{c + di}
&& \text{Apply complex conjugate}
\\
\\
=& (a - bi) \cdot (c - di)
&& \text{Apply FOIL method}
\\
\\
=& ac - adi - cbi + (bdi^2)
&& \text{Recall that } i^2 = -1
\\
\\
=& ac - adi - cbi + (bd(-1))
&& \text{Simplify}
\\
\\
=& (ac - bd) - (ad + cb) i
&&



\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...