Friday, January 24, 2020

Single Variable Calculus, Chapter 8, 8.1, Section 8.1, Problem 8

Evaluate $\displaystyle \int x^2 \cos mx dx$ by using Integration by parts.
If we let $u = x^2$ and $dv = \cos mx dx$, then
$du = 2x dx$ and $\displaystyle v = \int \cos mx dx = \frac{1}{m} \sin mx$

So,

$
\begin{equation}
\begin{aligned}
\int x^2 \cos mx dx = uv - \int vdu &= \frac{x^2}{m} \sin (mx) - \int \left( \frac{1}{m} \sin mx \right) (2x dx)\\
\\
&= \frac{x^2}{m} \sin (mx) - \frac{2}{m} \int x \sin (mx) dx
\end{aligned}
\end{equation}
$


To evaluate $\displaystyle \int x \sin (mx) dx$, we must use integration by parts once more, so...
If we let $u_1 = x$ and $dv_1 = \sin (mx) dx$, then
$ du_1 = dx$ and $\displaystyle v_1 = \int \sin (mx) dx = \frac{1}{m} \left(-\cos (mx) \right)$

Thus,

$
\begin{equation}
\begin{aligned}
\int x \sin (mx) dx &= u_1 v_1 - \int v_1 du_1 = \frac{-x}{m} \cos (mx) - \int \frac{-\cos (mx) dx}{m}\\
\\
&= \frac{-x \cos (mx)}{m} + \frac{\sin(mx)}{m^2} + c
\end{aligned}
\end{equation}
$


Therefore,



$
\begin{equation}
\begin{aligned}
\int x^2 \cos mx dx &= \frac{x^2}{m} \sin (mx) - \frac{2}{m} \left[ \frac{-x \cos (mx)}{m} + \frac{\sin (mx)}{m^2} + c\right]\\
\\
&= \frac{x^2 \sin (mx)}{m} + \frac{2x \cos (mx)}{m^2} - \frac{2 \sin (mx)}{m^3} + c
\end{aligned}
\end{equation}
$

1 comment:

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...