Friday, January 24, 2020

Single Variable Calculus, Chapter 8, 8.1, Section 8.1, Problem 8

Evaluate x2cosmxdx by using Integration by parts.
If we let u=x2 and dv=cosmxdx, then
du=2xdx and v=cosmxdx=1msinmx

So,

x2cosmxdx=uvvdu=x2msin(mx)(1msinmx)(2xdx)=x2msin(mx)2mxsin(mx)dx


To evaluate xsin(mx)dx, we must use integration by parts once more, so...
If we let u1=x and dv1=sin(mx)dx, then
du1=dx and v1=sin(mx)dx=1m(cos(mx))

Thus,

xsin(mx)dx=u1v1v1du1=xmcos(mx)cos(mx)dxm=xcos(mx)m+sin(mx)m2+c


Therefore,



x2cosmxdx=x2msin(mx)2m[xcos(mx)m+sin(mx)m2+c]=x2sin(mx)m+2xcos(mx)m22sin(mx)m3+c

1 comment:

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...