Wednesday, January 15, 2020

College Algebra, Chapter 3, 3.7, Section 3.7, Problem 46

Find the inverse of $\displaystyle f(x) = x^2 + x; x \geq - \frac{1}{2}$

To find the inverse of $f(x)$, we write $y = f(x)$


$
\begin{equation}
\begin{aligned}

y =& x^2 + x
&& \text{Solve for $x$ by completing the square: add } \left( \frac{1}{2} \right)^2 = \frac{1}{4}
\\
\\
y + \frac{1}{4} =& x^2 + x + \frac{1}{4}
&& \text{Perfect Square}
\\
\\
y + \frac{1}{4} =& \left( x + \frac{1}{2} \right)^2
&& \text{Take the square root}
\\
\\
\pm \sqrt{y + \frac{1}{4}} =& x + \frac{1}{2}
&& \text{Subtract } \frac{1}{2}
\\
\\
x =& \frac{-1}{2} \pm \sqrt{y + \frac{1}{4}}
&& \text{Interchange $x$ and $y$}
\\
\\
y =& \frac{-1}{2} \pm \sqrt{x + \frac{1}{4}}
&& \text{Apply restrictions } x \geq \frac{-1}{2}
\\
\\
y =& \frac{-1}{2} + \sqrt{x + \frac{1}{4}}
&&

\end{aligned}
\end{equation}
$


Thus, the inverse of $f(x) = x^2 + x$ is $\displaystyle f^{-1} (x) = \sqrt{x + \frac{1}{4}}$.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...