Saturday, July 27, 2013

int sin(sqrt(x)) dx Find the indefinite integral by using substitution followed by integration by parts.

To evaluate the given integral problem int sin(sqrt(x))dx using u-substitution, we may let:u = sqrt(x) .
 Square both sides of  u = sqrt(x) , we get: u^2 =x
Take the derivative of u^2 =x , we get: 2udu =dx .
Plug-in the values: u =sqrt(x) and dx = 2u du , we get:
 int sin(sqrt(x))dx =int sin(u)* 2u du
Apply the basic integration property: int c*f(x) dx = c int f(x) dx .
int sin(u)* 2u du =2int sin(u)* u du
Apply formula for integration by parts: int f*g'=f*g - int g*f' .
Let: f =u  then f' =du
       g' =sin(u) du then  g= -cos(u)
Note: From the table of integrals, we have int sin(theta) d theta= -cos(theta) +C .
Following the  formula for integration by parts, we set it up as:
2int sin(u)* u du= 2 * [ u *(-cos(u)) - int (-cos(u)) du]
                                 = 2 * [ -u cos(u)) + int (cos(u)) du]
                                 = 2 * [ -u cos(u)) + sin(u)]+C
                                 = -2ucos(u) +2sin(u) +C
Plug-in u=sqrt(x) on -2ucos(u) +2sin(u) +C , we get the complete indefinite integral as:
int sin(sqrt(x))dx=-2sqrt(x)cos(sqrt(x)) +2sin(sqrt(x)) +C .
 

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...