Thursday, July 11, 2013

Calculus: Early Transcendentals, Chapter 7, 7.4, Section 7.4, Problem 14

int 1/((x+a)(x+b)) dx
sol:
int 1/((x+a)(x+b)) dx
let [u= x+a] => du = dx
so ,
int 1/((x+a)(x+b)) dx
=int 1/((u)(x+b)) du
As u =x+a => x= u-a , on substituting in the above equation we get ,
=int 1/((u)(x+b)) du
=int 1/((u)((u-a)+b)) du
=int 1/((u)(u+b-a)) du
Taking partial fractions we obtain,
=int 1/((u)(u+b-a)) du
=int ((1/((a-b)(u+b-a)))+ (1/(u*(b-a)))) du
=int (1/((a-b)(u+b-a)))du+ int (1/(u*(b-a))) du -----------------(1)

Now let us consider
int (1/((a-b)(u+b-a)))du
let v=u+b-a => dv =du
so,
int (1/((a-b)(u+b-a)))du
= (1/(a-b)) int (1/(u+b-a))du
=(1/(a-b)) int (1/(v))dv
=(1/(a-b)) ln(v)
=(1/(a-b)) ln(u+b-a)
=(1/(a-b)) ln(x+b) as [u-a =x] ----------------------(2)
Now consider ,
int (1/(u*(b-a))) du
As similar to above we obtain as follows,
int (1/(u*(b-a))) du
= (1/(b-a))int (1/(u)) du
=(1/(b-a)) ln(u)
= (1/(b-a)) ln(x+a) as u=x+a -------------(3)
substituting (2) and (3) in (1) we get,
int 1/((x+a)(x+b)) dx
=int (1/((a-b)(u+b-a)))du+ int (1/(u*(b-a))) du
= (1/(a-b)) ln(x+b) +(1/(b-a)) ln(x+a) + C

is the solution :)

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...